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Why probability?

• Probability rules our lives

• It is everywhere!
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Why probability?

• What are the chances it rains tomorrow?

• What are the chances you win the lottery?

• What is the probabilty of getting an A in pols 209?
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Why probability?

• We use probability to express and calculate uncertainty

• Preview: later we will use probability to make statements
about the uncertainty in our data analysis
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Two fundamental concepts of probability

• Frequentist: long-run frequency of events
• ratio between the number of times the event occurs and the

number of trials
• example: coin flips

• Bayesian: belief about the likelihood of event occurrence
• evidence based belief
• often more sensible philosophy in political world
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Important Terms

1. Experiment: an action or a set of actions that produce
stochastic events of interest

1. sample space: a set of all possible outcomes of the
experiment, typically denoted by Ω

1. event: a subset of the sample space

(Imai - QSS)
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Example

What is the experiment, sample space, and one event for coin flips
or pulling a single card out of a deck of 52?
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Defining Probability

Probability of event A = P(A) = number of elements in A
number of elements in sample space

Probability of Head = P(H) = 1
2
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Example

What is the probability of 3 head in 3 flips?

Sample space?

Ω = {HHH,HHT,HTH,THH, HTT, THT, TTH, TTT}

What is the event space we are interested in?

{HHH}
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Example

What is the probability of 3 head in 3 flips?

P(HHH) = 1
8
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Example

What is the probability of 2 head in 3 flips?

Ω = {HHH,HHT,HTH,THH, HTT, THT, TTH, TTT}

What is the event space we are interested in?

{HHT, HTH, THH}

P(2 H) = 3
8

Florian Hollenbach 12



Example

What is the probability of 2 head in 3 flips?

Ω = {HHH,HHT,HTH,THH, HTT, THT, TTH, TTT}

What is the event space we are interested in?

{HHT, HTH, THH}

P(2 H) = 3
8

Florian Hollenbach 12



Example

What is the probability of 2 head in 3 flips?

Ω = {HHH,HHT,HTH,THH, HTT, THT, TTH, TTT}

What is the event space we are interested in?

{HHT, HTH, THH}

P(2 H) = 3
8

Florian Hollenbach 12



Axioms (rules) of Probability

• the probability of any event A is at least 0
• P(A) ≥ 0

• The total sum of all possible outcomes in the sample space
must be 1

• P(Ω) = 1

• If A and B are mutually exclusive (meaning only one or the
other can happen), then P(A or B) = P(A) + P(B)
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Axioms (rules) of Probability

Ac - complement to A, i.e. part of sample space not in A

Sometimes it is easier to calculate the probability of an event by
using its complement
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Using the complement:

What is the probability of having at least one Tail on three coin
flips?

Ω = {HHH,HHT,HTH,THH, HTT, THT, TTH, TTT}

P(at least one T) = 7
8

P(at least one T) = 1 - P(HHH) = 1 - 1
8
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Example of simple probability

What is the probability of getting a Queen as the first card from a
full deck?

Ω = {?}

Event space = {?}

p(Queen) = 4
52 = 1

13

Florian Hollenbach 16



Example of simple probability

What is the probability of getting a Queen as the first card from a
full deck?

Ω = {?}

Event space = {?}

p(Queen) = 4
52 = 1

13

Florian Hollenbach 16



How to quickly count the sample space when order matters:
permutations

• Often we do not want to or can’t write out all possible
combinations by hand

• How many possibilities are there to arrange letters A,B,C?

Three outcomes: A, B, C & three draws

First draw: A,B, or C

Second draw: two possibilities

Third draw: one left

3 x 2 x 1 possibilities
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How to quickly count the sample space when order matters:
permutations

Permutations count many ways we can order k objects out of a set
of n unique objects

nPk = n × (n − 1) × (n − 2) × ...× (n − k + 1) = n!
(n−k)!

What does n! stand for?

n! = n-factorial = n × (n − 1) × (n − 2) × ...× (n − n + 1)

3! = 3× 2× 1

Note: 0! = 1
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Permutation Example:

How many ways can we arrange four cards out of a the 13 spades
in our card deck?

first draw: ?

13 × 12 × 11 × 10

13!
(13−4)! = 13!

9! = 13×12×11×...×2×1
9×8×...×2×1 = 13× 12× 11× 10 = 17, 160
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Birthday Problem

Impress your family over Thanksgiving!

What is the probability that at least two people in this room have
the same birthday?

How could we figure that out?
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Birthday Problem

Can the law of total probabilities and complement help us?

Yes, P(at least two share bday) = 1 - P(nobody shares bday)
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Birthday Problem

P(nobody shares bday)?

What is the event space?

Event space: everyone has a unique birthday. How many different
possibilities?

How many possibilities for birthdays in a year?

365

How many unique arrangements would we need for nobody to share
the birthday?

number of people in room - k
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Birthday Problem

1. 365Pk = 365!
(365−k)! possibilities to arrange k unique birthdays

over 365 days

2. What is the sample space? All the different possibilities for k
birthdays (even non-unique).

365k
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Birthday Problem

P(at least two share bday) = 1 - P(nobody shares bday) = 1 -
365!

(365−k)!×365k

P(at least two share bday):

k = 10; 0.116,

k = 23; 0.504,

and k = 68; 0.999.
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Combinations

Combinations are similar to permutations, except that the ordering
doesn’t matter

So with respect to combinations of 3 out of 26 letters, ABC, BAC,
CAB, etc are the same

There are always fewer combinations than permutations
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Combinations vs. Permutations

Draw 2 out of letters ABC

Permutations:

AB, AC, BA, BC, CA, CB = 3!
1!

Combinations:

AB, AC, BC
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How to Calculate Combinations

Calculate permutations and then account for the fact that we
overcounted due to ordering

Get rid of counts of different arrangements of same combination:
divide by k!

nCk =
(n
k

)
= nPk

k! = n!
k!(n−k)!

Why divide by k! ?

for two sampled elements, we have 2!(= 2×1 = 2): A, B = AB, BA
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Lottery

What is the probability of winning (simplified) Mega Millions?

Pick five numbers between 1 and 70

Probability of getting 5 correct?
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Lottery

Probability of getting 5 correct?

What is the size of the event space?

1 ticket
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Lottery

Pick five numbers between 1 and 70

Sample space?

(70
5

)
= 70!

5!×(70−5)! = 70!
5!×65!

12,103,014
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Lottery

(n
k

)
in R

choose(n,k)

choose(70,5)

[1] 12103014
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Samping with and without Replacement

Two ways to sample (draw) data:

• with replacement: put draw back in box

• without replacement: keep draw, ticket can not be drawn again

If we are sampling for a survey, what technique do we use?
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Simulating the birthday problem in R

• Instead of calculating probabilities, we can often simulate them
in R

• Use R to draw k birthdays and see whether any duplicates exist

• We repeat the experiment over and over (~ 1000 times). The
share of experiments in which we found duplicates, will
represent P(at least one shared bday)
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Simulating the birthday problem in R

k <- 23 # number of people
sims <- 1000 # number of simulations
event <- 0 # counter
for (i in 1:sims) {

days <- sample(1:365, k, replace = TRUE)
days.unique <- unique(days) # unique birthdays
if (length(days.unique) < k) {

event <- event + 1 } }
event / sims

[1] 0.499
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Simulating the birthday problem in R

The larger the number of simulation iterations, the better the
accuracy

sims <- 10000 # number of simulations
event <- 0 # counter
for (i in 1:sims) {

days <- sample(1:365, k, replace = TRUE)
days.unique <- unique(days) # unique birthdays
if (length(days.unique) < k) {

event <- event + 1 }}
event / sims

[1] 0.5181
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