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In-class Exercise Linear Regression

Please dowload intrade08.csv & pres08.csv from class website

• Read both data sets into R

• Create data summary for each data sets
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Variables in the intrade data

• day: Date of the session
• statename: Full name of each state (including District of

Columbia in 2008)
• state: Abbreviation of each state (including District of

Columbia in 2008)
• PriceD: Closing price (predicted vote share) of Democratic

Nominee’s market
• PriceR: Closing price (predicted vote share) of Republican

Nominee’s market
• VolumeD: Total session trades of Democratic Party Nominee’s

market
• VolumeR: Total session trades of Republican Party Nominee’s

market
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Variables in the pres08 data

• state.name: Full name of state (only in pres2008)

• state: Two letter state abbreviation

• Obama: Vote percentage for Obama

• McCain: Vote percentage for McCain

• EV: Number of electoral college votes for this state
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Combining data sets

• First we have to combine the different data sets

• To do so, we need an identifier that tells R which observations
to match to each other

• What could we use?

state variable
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Combining data sets

• Use merge() function

merge(x,y, by =)
intresults08 <- merge(intrade08, pres08, by = "state")
head(intresults08)
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Question 1

Create a DaysToElection variable by subtracting the day of the
election from each day in the dataset. Now create a state margin of
victory variable to predict, and a betting market margin to predict
it with.

election day in 2008: Nov, 4th
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Solution 1

intresults08$DaysToElection
<- as.Date("2008-11-04") - as.Date(intresults08$day)

intresults08$obama.intmarg <- intresults08$PriceD - intresults08$PriceR
intresults08$obama.actmarg <- intresults08$Obama - intresults08$McCain
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Question 2

Considering only the trading one day from the election, predict the
actual electoral margins from the trading margins using a linear
model. Does it predict well? How would you visualize the
predictions and the outcomes together? Hint: because we only
have one predictor you can use abline.
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Solution 2

latest08 <- intresults08[intresults08$DaysToElection == 1,]
int.fit08 <- lm(obama.actmarg ~ obama.intmarg, data = latest08)
coef(int.fit08)
summary(int.fit08)$r.squared
plot(latest08$obama.intmarg, latest08$obama.actmarg,

xlab="Market’s margin for Obama", ylab="Obama margin")
abline(int.fit08)
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Question 3

What would be the prediction for the margin of victory if the
InTrade margin was 25? Mark this point on the previous plot.

Florian Hollenbach 10



Solution 3

coef(int.fit08)[1] + coef(int.fit08)[2]*25

plot(latest08$obama.intmarg, latest08$obama.actmarg,
xlab="Market’s margin for Obama", ylab="Obama margin")

abline(int.fit08)
points(25,(coef(int.fit08)[1] + coef(int.fit08)[2]*25), col = "red")
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Question 4

Even efficient markets aren’t omniscient. Information comes in about the election
every day and the market prices should reflect any change in information that seem
to matter to the outcome.

We can examine how and about what the markets change their minds by looking at
which states they are confident about, and which they update their ‘opinions’ (i.e.
their prices) about. Over the period before the election, let’s see how prices for each
state are evolving. We can get a compact summary of price movement by fitting a
linear model to Obama’s margin for each state over the 20 days before the election.

We will summarise price movement by the direction (up or down) and rate of change
(large or small) of price over time. This is basically also what people in finance do,
but they get paid more. . .

Start by plotting Obama’s margin in West Virginia against the number of days until
the election and modeling the relationship with a linear model. Use the last 20 days.
Show the model’s predictions on each day and the data. What does this model’s
slope coefficient tells us about which direction the margin is changing and also how
fast it is changing?
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Solution 4

stnames <- unique(intresults08$state.name)
recent <- subset(intresults08, subset=(DaysToElection <= 20)
& (state.name==stnames[1]))

recent.mod <- lm(obama.intmarg ~ DaysToElection, data=recent)
plot(recent$DaysToElection, recent$obama.intmarg,
xlab="Days to election", ylab="Market’s Obama margin")
abline(recent.mod)
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Question 5

Let’s do the same thing for all states and collect the slope
coefficients (β’s). How can we modify the code from the answer to
the previous question? Then plot the distribution of changes for all
states.
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Solution 5

stnames <- unique(intresults08$state.name)
change <- rep(NA, length(unique(intresults08$state.name)))
names(change) <- unique(intresults08$state.name)

for(i in 1: length(unique(intresults08$state.name))){
recent <- subset(intresults08, subset=(DaysToElection <= 20)
& (state.name==stnames[i]))

recent.mod <- lm(obama.intmarg ~ DaysToElection, data=recent)
change[i] <- coef(recent.mod)[2]
}
hist(change)
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Questin 5

Estimate a linear model using the intrade margin in the average
intrade margin in the week before the election to predict vote
margin in 2008. How well does the model predict?
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Solution 5

latest08 <- intresults08[intresults08$DaysToElection <8,]
average.Intrade <- tapply(latest08$obama.intmarg, latest08$state, mean)
true.margin <- tapply(latest08$obama.actmarg, latest08$state, mean)

int.fit08 <- lm(true.margin ~ average.Intrade)
coef(int.fit08)
summary(int.fit08)$r.squared
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Question 6

Next, we read in the same data for the 2012 election. Use the
linear model created above to create predictions for the margin in
2012. Calculate and plot the prediction error.
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Solution 6

data2012 <- read.csv("intresults12.csv")
data2012$DaysToElection <- as.Date("2008-11-06") - as.Date(data2012$day)
data2012$obama.intmarg <- data2012$PriceD - data2012$PriceR
data2012$obama.actmarg <- data2012$Obama - data2012$Romney
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Solution 6

latest12
<- data2012[data2012$DaysToElection <8,]

average.Intrade12
<- tapply(latest12$obama.intmarg, latest12$state, mean, na.rm = T)

true.margin12
<- tapply(latest12$obama.actmarg, latest12$state, mean, na.rm = T)

prediction
<- coef(int.fit08)[1] + coef(int.fit08)[2]*average.Intrade12

error <- true.margin12 - prediction
hist(error)
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Linear Regression and RCTs

Can we estimate regression models on data from experiments?

Yes, treatment status as the independent variable (0 or 1)
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Linear Regression and RCTs

• y = α + β * treatment + ε

• What is the interpretation of α here?

• What is the interpretation of β?
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Linear Regression and RCTs

• y = α + β * treatment + ε

• β = average treatment effect

• The two predicted values are the average outcome under each
condition

• β: Predicted change in Y caused by increase of T by 1

Remember, generally regression coefficents are not to be
interpreted as causal effects!
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Race and Job Applications

resume <- read.csv("resume.csv")
head(resume)

firstname sex race call
1 Allison female white 0
2 Kristen female white 0
3 Lakisha female black 0
4 Latonya female black 0
5 Carrie female white 0
6 Jay male white 0

• Randomized “race” in job applications
• What is the effect of race on likelyhood of callback?

Marianne Bertrand and Sendhil Mullainathan (American Economic Review 2004)
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Race and Job Applications

mean(resume$call[resume$race == "black"])
mean(resume$call[resume$race == "white"])
mean(resume$call[resume$race == "black"]) - mean(resume$call[resume$race == "white"])

[1] 0.06447639

[1] 0.09650924

[1] -0.03203285
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Race and Job Applications

linear <- lm(call ~ race, data = resume)
coef(linear)

(Intercept) racewhite
0.06447639 0.03203285

R automatically turns the factor into a dummy (binary) variable

• α is the intercept, when X = 0 (i.e. race is “black”)
• β is change in when X is set to 1 (i.e. race is “white”)
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Linear Regression with multiple independent variables

Y = α+ β1X1 + β2X2 + · · ·+ βpXp + ε

• principle of regression model stays the same

• we attempt to draw the best fitting line through a cloud of
points (now in multiple dimensions)
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Linear Regression with multiple independent variables

We still minimize the sum of the squared residuals:

SSR =
n∑

i=1

ε̂2i
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Linear Regression with multiple independent variables

We still minimize the sum of the squared residuals:

SSR =
n∑

i=1
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n∑
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(Yi − Ŷ )2
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Linear Regression with multiple independent variables

We still minimize the sum of the squared residuals:

SSR =
n∑

i=1

ε̂2i =
n∑

i=1

(Yi − Ŷ )2

And thus:

SSR =
∑n

i=1(Yi − (α̂+ β̂1Xi1 + β̂2Xi2 + · · ·+ β̂pXip))
2
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Linear Regression with multiple independent variables

Interpretation:

• α: Intercept or ŷ when all Xp = 0

• βp: Slope of predictor Xp

• βp: Predicted change in Ŷ when Xp increases by 1 and all
other predictors are held constant!
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Linear Regression with multiple independent variables

• βp: Predicted change in Ŷ when Xp increases by 1 and all
other predictors are held constant!

• we can use the multiple regression to control for confounders

• impact of each individual predictor when the other predictors
do not change

• Example: Association between income and child mortality
when regime type is not changing
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Linear Regression with multiple independent variables in R

result <- lm(y ~ x1 + x2 + x3 + x4, data = data)
coef(result)
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Linear Regression with multiple independent variables in R

data <- read.csv("bivariate_data.csv")
data2010 <- subset(data, Year == 2010)
bivar <- lm(Child.Mortality ~ log(GDP), data = data)
coef(bivar)
summary(bivar)$r.squared
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Linear Regression with multiple independent variables in R

data <- read.csv("bivariate_data.csv")
data2010 <- subset(data, Year == 2010)
bivar <- lm(Child.Mortality ~ log(GDP), data = data2010)
coef(bivar)
summary(bivar)$r.squared

(Intercept) log(GDP)
276.58162 -26.12717

[1] 0.586953
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Linear Regression with multiple independent variables in R

data <- read.csv("bivariate_data.csv")
data2010 <- subset(data, Year == 2010)
multiple <- lm(Child.Mortality ~ log(GDP) + PolityIV, data = data2010)
coef(multiple)
summary(multiple)$r.squared
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Linear Regression with multiple independent variables in R

data <- read.csv("bivariate_data.csv")
data2010 <- subset(data, Year == 2010)
multiple <- lm(Child.Mortality ~ log(GDP) + PolityIV, data = data2010)
coef(multiple)
summary(multiple)$r.squared

(Intercept) log(GDP) PolityIV
277.845620 -25.641789 -1.029062

[1] 0.6113747
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Linear Regression with multiple independent variables in R

data <- read.csv("bivariate_data.csv")
data2010 <- subset(data, Year == 2010)
multiple <- lm(Child.Mortality ~ log(GDP) + PolityIV, data = data2010)
coef(multiple)
coef(bivar)

(Intercept) log(GDP) PolityIV
277.845620 -25.641789 -1.029062

(Intercept) log(GDP)
276.58162 -26.12717
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Linear Regression with multiple independent variables in R

• In multiple regression models we want to adjust the goodness
of fit statistic by the number of variables included

• This is done via the degrees of freedom (DF) adjustment:

adjustedR2 = 1− SSR/(n − p − 1)
TSS/(n − 1)
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Linear Regression with multiple independent variables in R

data <- read.csv("bivariate_data.csv")
data2010 <- subset(data, Year == 2010)
multiple <- lm(Child.Mortality ~ log(GDP) + PolityIV, data = data2010)
coef(multiple)
summary(multiple)$r.squared
summary(multiple)$adj.r.squared
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Linear Regression with multiple independent variables in R

data <- read.csv("bivariate_data.csv")
data2010 <- subset(data, Year == 2010)
multiple <- lm(Child.Mortality ~ log(GDP) + PolityIV, data = data2010)
coef(multiple)
summary(multiple)$r.squared
summary(multiple)$adj.r.squared

(Intercept) log(GDP) PolityIV
277.845620 -25.641789 -1.029062

[1] 0.6113747

[1] 0.6061582
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