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Statistical Inference

Goal: trying to estimate something unobservable from observable
data

What we want to estimate: parameter θ  unobservable

What you do observe: data

We use data to compute an estimate of the parameter θ̂
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Parameters and Estimators

• parameter: the quantity that we are interested in

• estimator: method to compute parameter of interest
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Parameters and Estimators

Example:

• parameter: support for Jimbo Fisher in student population

• estimator: sample proportion of support as estimator
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Parameters and Estimators

Example:

• parameter: average causal effect of aspirin on headache

• estimator: difference in mean between treatment and control
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Quality of estimators

For the rest of the semester the question becomes:

How good is our estimator?

1. How close in expectation is the estimator to the truth?

2. How certain or uncertain are we about the estimate?
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Quality of estimators

How good is θ̂ as an estimate of θ?

• Ideally, we want to know estimation error = θ̂ − θtruth

But we can never calculate this. Why?

θtruth is unknown

If we knew what the truth was, we didn’t need an estimate
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Quality of estimators

Instead, we consider two hypothetical scenarios:

1. How well would θ̂ perform over repeated data generating
processes? (bias)

2. How well would θ̂ perform as the sample size goes to infinity?
(consistency)
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Bias

• Imagine the estimate being a random variable itself

• Drawing infinitely many samples of students asking about
Jimbo

What is the average of the sample average? Or what is the
expectation of the estimator?

bias = E(estimation error) = E(estimate - truth) = E(X̄ ) - p = p -
p = 0
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Bias - Important

An unbiased estimator does not mean that it is always exactly
correct!

To remember: bias measures whether in expectation (on average)
the estimator is giving us the truth
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Consistency

Essentially saying that the law of large numbers applies to the
estimator, i.e.:

An estimator is said to be consistent if it converges to the
parameter (truth) if N goes to ∞
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Variability

Next, we have to consider how certain we are about our results

Consider two estimators:

1. slightly biased, on average off by a bit, but always by the same
margin

2. unbiased, but misses target left and right
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Variability

(Encyclopedia of Machine Learning)
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Variability

We characterize the variability of an estimator by using the
standard deviation of the sampling distribution

How do we find that????

Remember, the sampling distribution is the distribution of our
statistic over hypothetical infinitely many samples
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Variability
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Standard Error

We estimate the standard deviation of the sampling distribution
from the observed data

standard error

“standard error and describes the (estimated) average degree to
which an estimator deviates from its expected value” (Imai 2017)
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Polling Example

Say we took a sample of 1500 students and asked whether they
support Jimbo or not

Define a random variable Xi = 1 if student i supports Jimbo,
Xi = 0 if not

Binomial distribution with success probability p and size N where p
is the proportion of all students who support Jimbo (population
dist)
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Polling Example

Estimator: ?
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Polling Example

Estimator: X = 1
N

∑N
i=1 Xi

In earlier notation: θtruth = p and θ = X
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Polling Example

Estimator: X = 1
N

∑N
i=1 Xi

1. LLN: X −→ p (consistent)

2. Expectation: E(X ) = p (unbiased)

3. standard error?

Florian Hollenbach 19



Polling Example - standard error

Xi are i.i.d Bernoulli random variables with probability = p

V(X ) = 1
N2V(

∑N
i=1 Xi ) = 1

N2

∑N
i=1 V(Xi )
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Polling Example - standard error

Xi are i.i.d Bernoulli random variables with probability = p

V(X ) = 1
N2V(

∑N
i=1 Xi ) = 1

N2

∑N
i=1 V(Xi ) = N

N2V(X ) = p×(1−p)
N
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Polling Example - standard error

V(X ) = p×(1−p)
N

Standard error:
√

V(X )

But we don’t know p! Now what?

We use our unbiased estimate of p: X
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Polling Example - standard error estimate

√
V̂(X ) =

√
X (1−X )

N
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Polling Example - standard error estimate

Assume in our sample 55% of students support Jimbo:

SE =
√

V̂(X ) =
√

0.55×(1−0.55)
1500 =

√
0.55×(0.45)

1500 = 0.013

We can expect our estimate on average to be off by 1.3 percentage
points

If X = 0.8, then SE = 0.010

If N = 500, X = 0.55, then SE = 0.022
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Standard error estimate

Standard error is based on variance of the sampling distribution

Gives estimate of uncertainty

Each estimator/statistic has unique sampling distribution, e.g.
difference in means
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Confidence Intervals

Often we don’t even know the sampling distribution of our
estimators

How could we approximate it?

Central limit theorem!
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Confidence Intervals

Central limit theorem says:

X ≈ N(E(X ), V(X )
N )

regardless of distribution of X
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Confidence Intervals

We can use the approximation to the sampling distribution,
X ≈ N(E(X ), V(X )

N ) to construct confidence intervals

Confidence intervals give a range of values that is likely to contain
the true value

To start, we select a probability value for our confidence level:
usually 95%
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Confidence Intervals

The 95% confidence interval specifies the range of values in which
the true parameter will fall for 95% of our hypothetical
samples/experiments

Put differently “Over a hypothetically repeated data generating
process, confidence intervals contain the true value of parameter
with the probability specified by the confidence level” (Imai 2017)
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Confidence interval

(1-α) large sample Confidence interval is defined as:

CI(α) = X − zα
2
× SE , X + zα

2
× SE

zα
2
is the critical value which equals (1 α

2 ) quantile of the standard
normal distribution
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Confidence interval

Where do the critical values come from?

Remember: Curve of the standard normal distribution:

• Symmetric around 0

• Total area under the curve is 100%

• Area between -1 and 1 is ~68%

• Area between -2 and 2 is ~95%

• Area between -3 and 3 is ~99.7%
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Confidence interval
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Critical values are the exact vales between which the standard
normal distribution will include (1-α) % of the area
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Confidence interval interpretation

Technically the CI is not the probability of the true parameter being
between the two value.

Remember, in our view the true parameter is fixed

Instead: “95% confidence intervals contain the true value of the
parameter 95% of the time during a hypothetically repeated data
generating process” (Imai 2017)
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Confidence interval interpretation

Remember in the Jimbo example with X = 0.55 and N = 1500

SE =
√

V̂(X ) =
√

0.55×(1−0.55)
1500 =

√
0.55×(0.45)

1500 = 0.013
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Confidence interval

CI(α) = X − zα
2
× SE , X + zα

2
× SE

CI(0.05) = 0.55− 1.96× 0.013, 0.55+ 1.96× 0.013 = 0.524, 0.576
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Confidence interval

What if we don’t know the variance of the estimator?

Let’s use the variance of the sample?

x <- rbinom(1500,1,0.7)
var <-var(x)/1500
SE <- sqrt(var)

SE = 0.013
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Confidence interval

xbar <- rep(NA, 10000)
for(i in 1:10000){

x <- rbinom(1500,1,0.55)
xbar[i] <-mean(x)

}

Write an R-script to test our confidence interval for Jimbo!
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Margin of Error in Surveys

• Margin of error is usually the difference from estimate to
upper/lower 95\

• Margin of error: z0.025 × ŜE ≈ z0.025 ×
√

X×(1−X )
N
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From Margin of Error to Sample Size

N ≈ 1.96×p×(1−p)

margin of error2
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From Margin of Error to Sample Size

The estimates of uncertainty discussed here only account for
uncertainty due to random sampling!

If there are other sources of bias, these can still be present and are
unaccounted for.

what are two possibly reasons for bias in surveys?

1. unit non-response bias

2. item non-response bias
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Uncertainty in Randomized Control Trials

How do we estimate the ATE in RTCs?

Difference in means between treatment and control group
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Uncertainty in Randomized Control Trials

sample average in treated group X c and control group X c

Standard error for the average in each group:

1. ŜE t =
√

σ̂2
t

Nt

2. ŜE c =
√

σ̂2
c

Nc

What do we use for σ̂2? sample variance!
∑

(X−Xi )
2

N
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Uncertainty in Randomized Control Trials

We can use these SEs to construct confidence intervals around each
of the averages, same process as for the survey (if the samples are
large enough)

But, this does not help us to calculate uncertainty for the difference
in means.
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Uncertainty in Randomized Control Trials

Standard Error for difference in means estimator (X t − X c):

ŜE =
√

V(Xt)
Nt

+ V(Xc )
Nc
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Uncertainty in Randomized Control Trials

We can use the standard error to construct a 95% confidence
interval for the difference in means:

Example: ATE = 3.5, SE = 2.65

CI?
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Uncertainty in Randomized Control Trials

We can use the standard error to construct a 95% confidence
interval for the difference in means:

Example: ATE = 3.5, SE = 2.65

CI(0.05) = 3.5− 1.96× 2.65, 3.5 + 1.96× 2.65 = -1,694, 8.694

Too much uncertainty
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Uncertainty in Randomized Control Trials

When evaluating effects, we usually judge them based on whether
the 95% confidence interval covers zero or not.
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In class Exercise

To isolate the causal effect of a criminal record for black and white applicants, Pager ran
an audit experiment. In this type of experiment, researchers present two similar people
that differ only according to one trait thought to be the source of discrimination.

To examine the role of a criminal record, Pager hired a pair of white men and a pair of
black men and instructed them to apply for existing entry-level jobs in the city of
Milwaukee. The men in each pair were matched on a number of dimensions, including
physical appearance and self-presentation. As much as possible, the only difference
between the two was that Pager randomly varied which individual in the pair would
indicate to potential employers that he had a criminal record. Further, each week, the pair
alternated which applicant would present himself as an ex-felon. To determine how
incarceration and race influence employment chances, she compared callback rates among
applicants with and without a criminal background and calculated how those callback
rates varied by race.
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In class Exercise

Download data criminalrecord.csv from the class website and read
into R

Summarize the data, what variables do you see?
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In class Exercise

Name Description
jobid Job ID number
callback 1 if tester received a callback, 0 if the tester did not receive a callback.
black 1 if the tester is black, 0 if the tester is white.
crimrec 1 if the tester has a criminal record, 0 if the tester does not.
interact 1 if tester interacted with employer during application, 0 if tester doesn’t
city 1 is job is located in the city center, 0 if job is located in the suburbs.
distance Job’s average distance to downtown.
custserv 1 if job is in the costumer service sector, 0 if it is not.
manualskill 1 if job requires manual skills, 0 if it does not.
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Question 1

How many observations are in the data? In how many cases is the
tester black? In how many cases is he white?
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Question 2

Now we examine the central question of the study. Calculate the
proportion of callbacks for white applicants with a criminal record,
white applicants without a criminal record, black applicants with a
criminal record, and black applicants without a criminal record.
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Question 3

Now consider the callback rate for white applicants with a criminal
record. Construct a 95% confidence interval around this estimate.
Also, construct a 99% confidence interval around this estimate.
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Question 4

Calculate the estimated effect of a criminal record for white
applicants by comparing the callback rate in the treatment
condition and the callback rate in the control condition. Create a
95% confidence interval around this estimate. Next, describe the
estimate and confidence interval in a way that could be understood
by a general audience.
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Question 5

Assuming a null hypothesis that there is no difference in callback
rates between white people with a criminal record and white people
without a criminal record, what is the probability that we would
observe a difference as large or larger than the one that we
observed in a sample of this size?
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