Political Science 209 - Fall 2018

Probability III

Florian Hollenbach
11th November 2018

Random Variables and Probability Distributions

- What is a random variable? We assigns a number to an event
- coin flip: tail $=0$; heads $=1$
- Senate election: Ted Cruz=0; Beto O'Rourke= 1
- Voting: vote $=1$; not vote $=0$

Random Variables and Probability Distributions

- What is a random variable? We assigns a number to an event
- coin flip: tail= 0 ; heads $=1$
- Senate election: Ted Cruz=0; Beto O'Rourke= 1
- Voting: vote $=1$; not vote $=0$

Probability distribution: Probability of an event that a random variable takes a certain value

Random Variables and Probability Distributions

- $\mathrm{P}($ coin $=1) ; \mathrm{P}($ coin $=0)$
- $\mathrm{P}($ election $=1) ; \mathrm{P}($ election $=0)$

Random Variables and Probability Distributions

- Probability density function (PDF): $f(x)$ How likely does X take a particular value?
- Probability mass function (PMF): When X is discrete, $f(x)=P(X=x)$

Random Variables and Probability Distributions

- Probability density function (PDF): $f(x)$ How likely does X take a particular value?
- Probability mass function (PMF): When X is discrete, $f(x)=P(X=x)$
- Cumulative distribution function (CDF): $\mathrm{F}(\mathrm{x})=\mathrm{P}(\mathrm{X} \leq x)$
- What is the probability that a random variable X takes a value equal to or less than x ?
- Area under the density curve (either we use the sum Σ or integral \int)
- Non-decreasing

Distribution

- PMF: for $x \in\{0,1, \ldots, n\}$,

$$
f(x)=P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

- PMF function to tell us: what is the probability of x successes given n trials with with $P(x)=p$

Distribution

- PMF: for $x \in\{0,1, \ldots, n\}$,

$$
f(x)=P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}
$$

- PMF function to tell us: what is the probability of x successes given n trials with with $P(x)=p$

In R :
dbinom(x = 2, size $=4$, prob $=0.1$) \#\# prob of 2 successes
[1] 0.0486

Distribution

- CDF: for $x \in\{0,1, \ldots, n\}$

$$
F(x)=P(X \leq x)=\sum_{k=0}^{x}\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- CDF function to tell us: what is the probability of x or fewer successes given n trials with with $P(x)=p$

Random Variables and Probability Distributions: Binomial

Distribution

- CDF: for $x \in\{0,1, \ldots, n\}$

$$
F(x)=P(X \leq x)=\sum_{k=0}^{x}\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- CDF function to tell us: what is the probability of x or fewer successes given n trials with with $P(x)=p$

In R :
pbinom(2, size $=4$, prob $=0.1$) \#\# prob of 2 or fewer succe
[1] 0.9963

PMF and CDF

CDF of $F(x)$ is equal to the sum of the results from calculating the PMF for all values smaller and equal to x

PMF and CDF

CDF of $F(x)$ is equal to the sum of the results from calculating the PMF for all values smaller and equal to x

In R :
pbinom(2, size $=4$, prob $=0.1$) \#\# CDF
sum(dbinom(c(0,1,2),4,0.1)) \#\# summing up the pdfs
[1] 0.9963
[1] 0.9963

Random Variables and Probability Distributions: Binomial

Distribution

- Example: flip a fair coin 3 times

$$
\begin{aligned}
& f(x)=P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x} \\
& f(x)=P(X=1)=\binom{3}{1} 0.5^{1}(0.5)^{2}=3 * 0.5 * 0.5^{2}=0.375
\end{aligned}
$$

Random Variables and Probability Distributions: Binomial Distribution

```
x <- 0:3
barplot(dbinom(x, size = 3, prob = 0.5), ylim = c(0, 0.4), names.arg = x, xlab = "x",
    ylab = "Density", main = "Probability mass function")
```


Random Variables and Probability Distributions: Binomial Distribution

Probability mass function

Random Variables and Probability Distributions: Binomial Distribution

```
x <- -1:4
pb <- pbinom(x, size = 3, prob = 0.5)
plot(x[1:2], rep(pb[1], 2), ylim = c(0, 1), type = "s", xlim = c(-1, 4), xlab = "x",
    ylab = "Probability", main = "Cumulative distribution function")
for (i in 2:(length(x)-1)) {
    lines(x[i:(i+1)], rep(pb[i], 2))
}
points(x[2:(length(x)-1)], pb[2:(length(x)-1)], pch = 19)
points(x[2:(length(x)-1)], pb[1:(length(x)-2)])
```


Random Variables and Probability Distributions: Binomial Distribution

Random Variables and Probability Distributions: Normal Dis-

 tributionNormal distribution

Normal distribution also called Gaussian distribution

Normal distribution

- Takes on values from $-\infty$ to ∞
- Defined by two things: μ and σ^{2}
- Mean and Variance (standard deviation squared)
- Mean defines the location of the distribution
- Variance defines the spread

Random Variables and Probability Distributions: Normal Distribution

Normal distribution with mean μ and standard deviation σ - PDF: $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$

Random Variables and Probability Distributions: Normal Distribution

Normal distribution with mean μ and standard deviation σ

- PDF: $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$

In R :
dnorm(2, mean $=2$, sd $=2$) \#\# probability of $x=2$ with norm
[1] 0.1994711

Random Variables and Probability Distributions: Normal Distribution

- CDF (no simple formula. use to compute it): $F(x)=P(X \leq x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(t-\mu)^{2}}{2 \sigma^{2}}\right) d t$
- What will be $F(x=2)$ for $N(2,4)$?

Random Variables and Probability Distributions: Normal Distribution

- CDF (no simple formula. use to compute it):

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(t-\mu)^{2}}{2 \sigma^{2}}\right) d t
$$

- What will be $F(x=2)$ for $N(2,4)$?

In R :
pnorm(2, mean $=2$, sd = 2) \#\# probability of $\mathrm{x}=2$ with norm
[1] 0.5

Normal distribution

- Normal distribution is symmetric around the mean
- Mean $=$ Median

Random Variables and Probability Distributions: Normal Distribution

Probability density function

Random Variables and Probability Distributions: Normal Distribution in R

```
x<- seq(from = -7, to = 7, by = 0.01)
plot(x, dnorm(x), xlab = "x", ylab = "density", type = "l",
    main = "Probability density function", ylim = c(0, 0.9))
lines(x, dnorm(x, sd = 2), col = "red", lwd = lwd)
lines(x, dnorm(x, mean = 1, sd = 0.5), col = "blue", lwd = lwd)
```


Random Variables and Probability Distributions: Normal Distribution in R

Probability density function

Random Variables and Probability Distributions: Normal Distribution in R

```
plot(x, pnorm(x), xlab = "x", ylab = "probability", type = "l",
    main = "Cumulative distribution function", lwd = lwd)
lines(x, pnorm(x, sd = 2), col = "red", lwd = lwd)
lines(x, pnorm(x, mean = 1, sd = 0.5), col = "blue", lwd = lwd)
```


Random Variables and Probability Distributions: Normal Distribution in R

Cumulative distribution function

Random Variables and Probability Distributions: Normal Distribution

Let $X \sim N\left(\mu, \sigma^{2}\right)$, and c be some constant

- Adding/subtracting to/from a random variable that is normally distributed also results in a variable with a normal distribution: $\mathrm{Z}=\mathrm{X}+\mathrm{c}$ then $\mathrm{Z} \sim N\left(\mu+c, \sigma^{2}\right)$

Random Variables and Probability Distributions: Normal Distribution

Let $X \sim N\left(\mu, \sigma^{2}\right)$, and c be some constant

- Adding/subtracting to/from a random variable that is normally distributed also results in a variable with a normal distribution: $\mathrm{Z}=\mathrm{X}+\mathrm{c}$ then $\mathrm{Z} \sim N\left(\mu+c, \sigma^{2}\right)$
- Multiplying or dividing a random variable that is normally distributed also results in a variable with a normal distribution: $Z=X \times c$ then $Z \sim N\left(\mu \times c,(\sigma \times c)^{2}\right)$
- Z-score of a random variable that is normally distributed has mean 0 and $s d=1$

Random Variables and Probability Distributions: Normal Distribution

Curve of the standard normal distribution:

- Symmetric around 0
- Total area under the curve is 100%
- Area between -1 and 1 is $\sim 68 \%$
- Area between -2 and 2 is $\sim 95 \%$
- Area between -3 and 3 is $\sim 99.7 \%$

Random Variables and Probability Distributions: Normal Distribution

```
x <- seq(from = -7, to = 7, by = 0.01)
lwd <- 1.5
plot(x, dnorm(x), xlab = "x", ylab = "density", type = "l",
    main = "Probability density function", ylim = c(0, 0.9))
abline(v= -1, col = "red")
abline(v= 1, col = "red")
abline(v= -2, col = "green")
abline(v= 2, col = "green")
```


Random Variables and Probability Distributions: Normal Distribution

Probability density function

Random Variables and Probability Distributions: Normal Distribution

Curve of the any normal distribution:

- Symmetric around 0
- Total area under the curve is 100%
- Area between -1SD and +1 SD is $\sim 68 \%$
- Area between -2SD and +2SD is $\sim 95 \%$
- Area between -3SD and +3 SD is $\sim 99.7 \%$

Random Variables

Expectations, Means, and Variances
For probability distributions, means should not be confused with sample means

Expectations or means of a random variable have specific meanings for its the probability distribution

Means and Expectation

A sample mean varies from sample to sample Mean of a probability distribution is a theoretical construct and constant

Means and Expectation

A sample mean varies from sample to sample Mean of a probability distribution is a theoretical construct and constant

Example: Age of undergraduate body at A\&M

Means and Expectation

The expectation of a random variable is equal to the sum of all possibilities weighted by the probabilities

Means and Expectation

The expectation of a random variable is equal to the sum of all possibilities weighted by the probabilities

Example: expectation of rolling one die

$$
\mathbb{E}(X)=\frac{1}{6} \times 1+\frac{1}{6} \times 2+\frac{1}{6} \times 3+\frac{1}{6} \times 4 \frac{1}{6} \times 5 \frac{1}{6} \times 6=3.5
$$

Means and Expectation

The expectation of a random variable is equal to the sum of all possibilities weighted by the probabilities

$$
\mathbb{E}(X)= \begin{cases}\sum_{x} x f(x) & \text { if } X \text { is discrete } \\ \int x f(x) d x & \text { if } X \text { is continuous }\end{cases}
$$

Means and Expectation

Remember the lottery!
Expected value: winnings $\times \mathrm{p}$ (winning) $+0 \times \mathrm{p}$ (not winning)

Means and Expectation

What is $\mathbb{E}(X)$ for the number of heads in 100 coin flips?

Means and Expectation

What is $\mathbb{E}(X)$ for the number of heads in 100 coin flips?

$$
\mathbb{E}(X)=0.5 \times 1+0.5 \times 1+\ldots+0.5 \times 1=0.5 * 100=50
$$

Variance

- Variance is standard deviation squared
- Variance in a probability distribution indicates how much uncertainty exists
- Similar but not the same as sample standard deviation

Variance

Population variance:
$\mathbb{V}(X)=\mathbb{E}\left[\{X-\mathbb{E}(X)\}^{2}\right]=\mathbb{E}\left(X^{2}\right)-\{\mathbb{E}(X)\}^{2}$

Large Sample Theorem

If we have a sample of i.i.d. observations from random variable X with expectation $\mathbb{E}(X)$, then

$$
\bar{X}_{n}=\frac{1}{N} \sum_{i=1}^{N} X_{i} \rightarrow \mathbb{E}(X)
$$

Large Sample Theorem

If we have a sample of i.i.d. observations from random variable X with expectation $\mathbb{E}(X)$, then
$\bar{X}_{n}=\frac{1}{N} \sum_{i=1}^{N} X_{i} \rightarrow \mathbb{E}(X)$
In English: As the number of draws increases, the sample mean approaches the variable's distribution expectation

Large Sample Theorem

Examples:

1. Rolling a die, 1000 times
2. Drawing respondents from a population of supporters and non-supporters for politician A
3. Birthday problem simulation

Large Sample Theorem

```
draws <- c(seq(from = 1, to = 1000, by = 10),seq(1000,5000,
avgs <- rep(NA, length(draws))
for(i in 1:length(draws)){
samp <-sample(c(1:6),draws[i],replace = T)
avgs[i] <- mean(samp)
}
plot(draws,avgs, type = "l")
```


Large Sample Theorem

Central Limit Theorem

But, we want to learn from samples about the true underlying distribution (population)!

How do we know when the sample mean is close to the population expectation?

Central Limit Theorem

Here is where it gets crazy!
CLT: distribution of sample means approaches a normal distribution as number of samples increases!

Central Limit Theorem

Example:

1. Experiment: flip a coin 10 times and record the number of heads
2. Do experiment above 1000 times

What is $E(X)$ if $X=\#$ of Heads?

Central Limit Theorem

```
avgs <- rep(NA,1000)
for(i in 1:1000){
samp <- rbinom(1000,10,p=0.5)
avgs[i] <- mean(samp)
}
plot(density(avgs))
```


Central Limit Theorem

Mean across all samples $=4.96$

Central Limit Theorem

In fact, the z-score of the sample mean converges in distribution to the standard normal distribution!
Theorem: $Z=\frac{\bar{X}_{n}-\mathbb{E}\left(\bar{X}_{n}\right)}{\sqrt{\mathbb{V}(\bar{X})}}=\frac{\bar{X}-\mathbb{E}(X)}{\sqrt{\mathbb{V}(X) / n}}$ approaches to the standard
Normal distribution $\mathcal{N}(0,1)$

Central Limit Theorem

Remember $E(X)=n \times p$ and $V(X)=n \times p \times(1-p)$ for binomial
z_avgs <- rep (NA,1000)
for(i in 1:1000)\{
samp <- rbinom(1000,10,p=0.5)
z_avgs[i] <- (mean(samp)- 5)/sqrt(2.5/1000)
\}
plot(density(z_avgs))

Central Limit Theorem

density.default(x = z_avgs)

CLT: Example rolling a die 10 times

```
avgs <- rep(NA,1000)
for(i in 1:1000){
samp <- sample(c(1:6),10, replace = T)
avgs[i] <- sum(samp)
}
plot(density(avgs))
```


Central Limit Theorem

Central Limit Theorem: Why do we care?

- Hypothetically repeated polls with sample size N
- $X_{i}=1$ if support for Jimbo Fisher, $X_{i}=0$ if supports Kevin Sumlin
- Probability model: $\sum_{i=1}^{n} X_{i} \sim \operatorname{Binom}(n, p)$

Central Limit Theorem: Why do we care?

- Hypothetically repeated polls with sample size N
- $X_{i}=1$ if support for Jimbo Fisher, $X_{i}=0$ if supports Kevin Sumlin
- Probability model: $\sum_{i=1}^{n} X_{i} \sim \operatorname{Binom}(n, p)$
- Jimbo's support rate: $\bar{X}_{n}=\sum_{i=1}^{n} X_{i} / n$
- LLN: $\bar{X}_{n} \longrightarrow p$ as n tends to infinity
- CLT: $\bar{X}_{n} \stackrel{\text { approx. }}{\sim} \mathcal{N}\left(0, \frac{p(1-p)}{n}\right)$ for a large n

