Political Science 209 - Fall 2018

Probability III

Florian Hollenbach 11th November 2018

- What is a random variable? We assigns a number to an event
 - coin flip: tail= 0; heads= 1
 - Senate election: Ted Cruz= 0; Beto O'Rourke= 1
 - Voting: vote = 1; not vote = 0

- What is a random variable? We assigns a number to an event
 - coin flip: tail= 0; heads= 1
 - Senate election: Ted Cruz= 0; Beto O'Rourke= 1
 - Voting: vote = 1; not vote = 0

Probability distribution: Probability of an event that a random variable takes a certain value

- P(coin =1); P(coin = 0)
- P(election = 1); P(election = 0)

Random Variables and Probability Distributions

- Probability density function (PDF): f(x) How likely does X take a particular value?
- Probability mass function (PMF): When X is discrete, f(x)=P(X =x)

Random Variables and Probability Distributions

- Probability density function (PDF): f(x) How likely does X take a particular value?
- Probability mass function (PMF): When X is discrete, f(x)=P(X =x)
- Cumulative distribution function (CDF): $F(x) = P(X \le x)$
 - What is the probability that a random variable X takes a value equal to or less than x?
 - Area under the density curve (either we use the sum Σ or integral $\int)$
 - Non-decreasing

- PMF: for $x \in \{0, 1, ..., n\}$, $f(x) = P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}$
- PMF function to tell us: what is the probability of x successes given n trials with with P(x) = p

• PMF: for
$$x \in \{0, 1, ..., n\}$$
,
 $f(x) = P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}$

 PMF function to tell us: what is the probability of x successes given n trials with with P(x) = p

In R:

dbinom(x = 2, size = 4, prob = 0.1) ## prob of 2 successes :

[1] 0.0486

- CDF: for $x \in \{0, 1, ..., n\}$ $F(x) = P(X \le x) = \sum_{k=0}^{x} {n \choose k} p^k (1-p)^{n-k}$
- CDF function to tell us: what is the probability of x or fewer successes given n trials with with P(x) = p

• CDF: for
$$x \in \{0, 1, ..., n\}$$

 $F(x) = P(X \le x) = \sum_{k=0}^{x} {n \choose k} p^k (1-p)^{n-k}$

 CDF function to tell us: what is the probability of x or fewer successes given n trials with with P(x) = p

In R:

pbinom(2, size = 4, prob = 0.1) ## prob of 2 or fewer succes

[1] 0.9963

CDF of F(x) is equal to the sum of the results from calculating the PMF for all values smaller and equal to x

CDF of $\mathsf{F}(\mathsf{x})$ is equal to the sum of the results from calculating the PMF for all values smaller and equal to x

In R:

pbinom(2, size = 4, prob = 0.1) ## CDF

sum(dbinom(c(0,1,2),4,0.1)) ## summing up the pdfs

[1] 0.9963

[1] 0.9963

• Example: flip a fair coin 3 times $f(x) = P(X = x) = {n \choose x} p^{x} (1 - p)^{n-x}$ $f(x) = P(X = 1) = {3 \choose 1} 0.5^{1} (0.5)^{2} = 3 * 0.5 * 0.5^{2} = 0.375$

```
x <- 0:3
barplot(dbinom(x, size = 3, prob = 0.5), ylim = c(0, 0.4), names.arg = x, xlab = "x",
        ylab = "Density", main = "Probability mass function")
```


Probability mass function

```
x <- -1:4
pb <- pbinom(x, size = 3, prob = 0.5)
plot(x[1:2], rep(pb[1], 2), ylim = c(0, 1), type = "s", xlim = c(-1, 4), xlab = "x",
    ylab = "Probability", main = "Cumulative distribution function")
for (i in 2:(length(x)-1)) {
    lines(x[i:(i+1)], rep(pb[i], 2))
}
points(x[2:(length(x)-1)], pb[2:(length(x)-1)], pch = 19)
points(x[2:(length(x)-1)], pb[1:(length(x)-2)])</pre>
```


Cumulative distribution function

Normal distribution

Normal distribution also called Gaussian distribution

- Takes on values from - ∞ to ∞
- Defined by two things: μ and σ^2
 - Mean and Variance (standard deviation squared)
- Mean defines the location of the distribution
- Variance defines the spread

Normal distribution with mean μ and standard deviation σ

• PDF:
$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Normal distribution with mean μ and standard deviation σ

• PDF:
$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

In R:

dnorm(2, mean = 2, sd = 2) ## probability of x =2 with norma

[1] 0.1994711

- CDF (no simple formula. use to compute it): $F(x) = P(X \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(t-\mu)^2}{2\sigma^2}\right) dt$
- What will be F(x = 2) for N(2,4)?

- CDF (no simple formula. use to compute it): $F(x) = P(X \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(t-\mu)^2}{2\sigma^2}\right) dt$
- What will be F(x = 2) for N(2,4)?

In R:

pnorm(2, mean = 2, sd = 2) ## probability of x =2 with norma

[1] 0.5

- Normal distribution is symmetric around the mean
- Mean = Median

Probability density function

x <- seq(from = -7, to = 7, by = 0.01)
plot(x, dnorm(x), xlab = "x", ylab = "density", type = "l",
 main = "Probability density function", ylim = c(0, 0.9))
lines(x, dnorm(x, sd = 2), col = "red", lwd = lwd)
lines(x, dnorm(x, mean = 1, sd = 0.5), col = "blue", lwd = lwd)</pre>

Probability density function

```
plot(x, pnorm(x), xlab = "x", ylab = "probability", type = "l",
    main = "Cumulative distribution function", lwd = lwd)
lines(x, pnorm(x, sd = 2), col = "red", lwd = lwd)
lines(x, pnorm(x, mean = 1, sd = 0.5), col = "blue", lwd = lwd)
```


Cumulative distribution function

Let $X \sim N(\mu, \sigma^2)$, and c be some constant

• Adding/subtracting to/from a random variable that is normally distributed also results in a variable with a normal distribution: Z = X + c then $Z \sim N(\mu + c, \sigma^2)$

Let $X \sim N(\mu, \sigma^2)$, and c be some constant

- Adding/subtracting to/from a random variable that is normally distributed also results in a variable with a normal distribution: Z = X + c then $Z \sim N(\mu + c, \sigma^2)$
- Multiplying or dividing a random variable that is normally distributed also results in a variable with a normal distribution: Z = X × c then Z ~ N(μ × c, (σ × c)²)
- Z-score of a random variable that is normally distributed has mean 0 and sd = 1 $\,$

Curve of the standard normal distribution:

- Symmetric around 0
- Total area under the curve is 100%
- Area between -1 and 1 is ${}^{\sim}68\%$
- Area between -2 and 2 is $^{\sim}95\%$
- Area between -3 and 3 is $~^{\circ}99.7\%$

```
x <- seq(from = -7, to = 7, by = 0.01)
lwd <- 1.5
plot(x, dnorm(x), xlab = "x", ylab = "density", type = "l",
    main = "Probability density function", ylim = c(0, 0.9))
abline(v= -1, col = "red")
abline(v= 1, col = "red")
abline(v= -2, col = "green")
abline(v= 2, col = "green")
```


Probability density function

Curve of the any normal distribution:

- Symmetric around 0
- Total area under the curve is 100%
- Area between -1SD and +1SD is $^{\sim}68\%$
- Area between -2SD and +2SD is $^{\sim}95\%$
- Area between -3SD and +3SD is $^\circ99.7\%$

Expectations, Means, and Variances

For probability distributions, means should not be confused with *sample means*

Expectations or means of a random variable have specific meanings for its the probability distribution

A sample mean varies from sample to sample Mean of a probability distribution is a theoretical construct and constant

- A sample mean varies from sample to sample
- Mean of a probability distribution is a theoretical construct and constant
- Example: Age of undergraduate body at A&M

The expectation of a random variable is equal to the sum of all possibilities *weighted* by the probabilities

The expectation of a random variable is equal to the sum of all possibilities *weighted* by the probabilities

Example: expectation of rolling one die $\mathbb{E}(X) = \frac{1}{6} \times 1 + \frac{1}{6} \times 2 + \frac{1}{6} \times 3 + \frac{1}{6} \times 4\frac{1}{6} \times 5\frac{1}{6} \times 6 = 3.5$

The expectation of a random variable is equal to the sum of all possibilities *weighted* by the probabilities

$$\mathbb{E}(X) = \begin{cases} \sum_{x} x f(x) & \text{if } X \text{ is discrete} \\ \int x f(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

Remember the lottery!

Expected value: winnings \times p(winning) + 0 \times p(not winning)

What is $\mathbb{E}(X)$ for the number of heads in 100 coin flips?

What is $\mathbb{E}(X)$ for the number of heads in 100 coin flips? $\mathbb{E}(X) = 0.5 \times 1 + 0.5 \times 1 + ... + 0.5 \times 1 = 0.5 * 100 = 50$

- Variance is standard deviation squared
- Variance in a probability distribution indicates how much uncertainty exists
- Similar but not the same as sample standard deviation

Population variance: $\mathbb{V}(X) = \mathbb{E}[\{X - \mathbb{E}(X)\}^2] = \mathbb{E}(X^2) - \{\mathbb{E}(X)\}^2$

If we have a sample of i.i.d. observations from random variable X with expectation $\mathbb{E}(X)$, then

 $\bar{X}_n = \frac{1}{N} \sum_{i=1}^N X_i \to \mathbb{E}(X)$

If we have a sample of i.i.d. observations from random variable X with expectation $\mathbb{E}(X)$, then

$$\bar{X}_n = \frac{1}{N} \sum_{i=1}^N X_i \to \mathbb{E}(X)$$

In English: As the number of draws increases, the sample mean approaches the variable's distribution expectation

Examples:

- 1. Rolling a die, 1000 times
- 2. Drawing respondents from a population of supporters and non-supporters for politician A
- 3. Birthday problem simulation

```
draws <- c(seq(from = 1, to = 1000, by = 10),seq(1000,5000,8
avgs <- rep(NA, length(draws))
for(i in 1:length(draws)){
  samp <-sample(c(1:6),draws[i],replace = T)
  avgs[i] <- mean(samp)
}
plot(draws,avgs, type = "1")</pre>
```

Large Sample Theorem

But, we want to learn from samples about the true underlying distribution (population)!

How do we know when the sample mean is close to the population expectation?

Here is where it gets crazy!

CLT: distribution of sample means approaches a normal distribution as number of samples increases!

Example:

- 1. Experiment: flip a coin 10 times and record the number of heads
- 2. Do experiment above 1000 times

What is E(X) if X = # of Heads?

```
avgs <- rep(NA,1000)
for(i in 1:1000){
samp <- rbinom(1000,10,p=0.5)
avgs[i] <- mean(samp)
}
plot(density(avgs))</pre>
```

Central Limit Theorem

Mean across all samples = 4.96

In fact, the z-score of the sample mean *converges in distribution* to the standard normal distribution!

Theorem: $Z = \frac{\overline{X}_n - \mathbb{E}(\overline{X}_n)}{\sqrt{\mathbb{V}(\overline{X})}} = \frac{\overline{X} - \mathbb{E}(X)}{\sqrt{\mathbb{V}(X)/n}}$ approaches to the standard Normal distribution $\mathcal{N}(0, 1)$

Remember $E(X) = n \times p$ and $V(X) = n \times p \times (1-p)$ for binomial

```
z_avgs <- rep(NA,1000)
for(i in 1:1000){
samp <- rbinom(1000,10,p=0.5)
z_avgs[i] <- (mean(samp)- 5)/sqrt(2.5/1000)
}
plot(density(z_avgs))</pre>
```

Central Limit Theorem


```
avgs <- rep(NA,1000)
for(i in 1:1000){
samp <- sample(c(1:6),10, replace = T)
avgs[i] <- sum(samp)
}
plot(density(avgs))</pre>
```

Central Limit Theorem

Central Limit Theorem: Why do we care?

- Hypothetically repeated polls with sample size N
- $X_i = 1$ if support for Jimbo Fisher, $X_i = 0$ if supports Kevin Sumlin
- Probability model: $\sum_{i=1}^{n} X_i \sim \operatorname{Binom}(n, p)$

Central Limit Theorem: Why do we care?

- Hypothetically repeated polls with sample size N
- $X_i = 1$ if support for Jimbo Fisher, $X_i = 0$ if supports Kevin Sumlin
- Probability model: $\sum_{i=1}^{n} X_i \sim \operatorname{Binom}(n, p)$
- Jimbo's support rate: $\overline{X}_n = \sum_{i=1}^n X_i/n$
- LLN: $\overline{X}_n \longrightarrow p$ as *n* tends to infinity

• CLT:
$$\overline{X}_n \overset{\text{approx.}}{\sim} \mathcal{N}\left(0, \frac{p(1-p)}{n}\right)$$
 for a large n