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Random Variables and Probability Distributions

• What is a random variable? We assigns a number to an event
• coin flip: tail= 0; heads= 1
• Senate election: Ted Cruz= 0; Beto O’Rourke= 1
• Voting: vote = 1; not vote = 0

Probability distribution: Probability of an event that a random
variable takes a certain value
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Random Variables and Probability Distributions

• P(coin =1); P(coin = 0)

• P(election = 1); P(election = 0)
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Random Variables and Probability Distributions

• Probability density function (PDF): f(x) How likely does X
take a particular value?

• Probability mass function (PMF): When X is discrete,
f(x)=P(X =x)

• Cumulative distribution function (CDF): F(x) = P(X ≤ x)
• What is the probability that a random variable X takes a value

equal to or less than x?
• Area under the density curve (either we use the sum Σ or

integral
∫
)

• Non-decreasing
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Random Variables and Probability Distributions: Binomial
Distribution

• PMF: for x ∈ {0, 1, . . . , n},
f (x) = P(X = x) =

(n
x

)
px(1− p)n−x

• PMF function to tell us: what is the probability of x successes
given n trials with with P(x) = p

In R:

dbinom(x = 2, size = 4, prob = 0.1) ## prob of 2 successes in 4 trials with p =0.1

[1] 0.0486
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Random Variables and Probability Distributions: Binomial
Distribution

• CDF: for x ∈ {0, 1, . . . , n}
F (x) = P(X ≤ x) =

∑x
k=0

(n
k

)
pk(1− p)n−k

• CDF function to tell us: what is the probability of x or fewer
successes given n trials with with P(x) = p

In R:

pbinom(2, size = 4, prob = 0.1) ## prob of 2 or fewer successes in 4 trials with p =0.1

[1] 0.9963
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PMF and CDF

CDF of F(x) is equal to the sum of the results from calculating the
PMF for all values smaller and equal to x

In R:

pbinom(2, size = 4, prob = 0.1) ## CDF

sum(dbinom(c(0,1,2),4,0.1)) ## summing up the pdfs

[1] 0.9963

[1] 0.9963
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Random Variables and Probability Distributions: Binomial
Distribution

• Example: flip a fair coin 3 times
f (x) = P(X = x) =

(n
x

)
px(1− p)n−x

f (x) = P(X = 1) =
(3
1

)
0.51(0.5)2 = 3 ∗ 0.5 ∗ 0.52 = 0.375
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Random Variables and Probability Distributions: Binomial
Distribution

x <- 0:3
barplot(dbinom(x, size = 3, prob = 0.5), ylim = c(0, 0.4), names.arg = x, xlab = "x",

ylab = "Density", main = "Probability mass function")
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Random Variables and Probability Distributions: Binomial
Distribution
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Random Variables and Probability Distributions: Binomial
Distribution

x <- -1:4
pb <- pbinom(x, size = 3, prob = 0.5)
plot(x[1:2], rep(pb[1], 2), ylim = c(0, 1), type = "s", xlim = c(-1, 4), xlab = "x",

ylab = "Probability", main = "Cumulative distribution function")
for (i in 2:(length(x)-1)) {

lines(x[i:(i+1)], rep(pb[i], 2))
}
points(x[2:(length(x)-1)], pb[2:(length(x)-1)], pch = 19)
points(x[2:(length(x)-1)], pb[1:(length(x)-2)])
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Random Variables and Probability Distributions: Binomial
Distribution
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Random Variables and Probability Distributions: Normal Dis-
tribution

Normal distribution
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Random Variables and Probability Distributions: Normal Dis-
tribution

Normal distribution also called Gaussian distribution
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Normal distribution

• Takes on values from -∞ to ∞
• Defined by two things: µ and σ2

• Mean and Variance (standard deviation squared)

• Mean defines the location of the distribution

• Variance defines the spread
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Random Variables and Probability Distributions: Normal Dis-
tribution

Normal distribution with mean µ and standard deviation σ

• PDF: f (x) = 1√
2πσ

exp
(
− (x−µ)2

2σ2

)

In R:

dnorm(2, mean = 2, sd = 2) ## probability of x =2 with normal variable mean 2 sd 2

[1] 0.1994711

Florian Hollenbach 15



Random Variables and Probability Distributions: Normal Dis-
tribution

Normal distribution with mean µ and standard deviation σ

• PDF: f (x) = 1√
2πσ

exp
(
− (x−µ)2

2σ2

)
In R:

dnorm(2, mean = 2, sd = 2) ## probability of x =2 with normal variable mean 2 sd 2

[1] 0.1994711

Florian Hollenbach 15



Random Variables and Probability Distributions: Normal Dis-
tribution

• CDF (no simple formula. use to compute it):
F (x) = P(X ≤ x) =

∫ x
−∞

1√
2πσ

exp
(
− (t−µ)2

2σ2

)
dt

• What will be F(x =2) for N(2,4)?

In R:

pnorm(2, mean = 2, sd = 2) ## probability of x =2 with normal variable mean 2 sd 2

[1] 0.5
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Normal distribution

• Normal distribution is symmetric around the mean

• Mean = Median
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Random Variables and Probability Distributions: Normal Dis-
tribution
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Random Variables and Probability Distributions: Normal Dis-
tribution in R

x <- seq(from = -7, to = 7, by = 0.01)
plot(x, dnorm(x), xlab = "x", ylab = "density", type = "l",

main = "Probability density function", ylim = c(0, 0.9))
lines(x, dnorm(x, sd = 2), col = "red", lwd = lwd)
lines(x, dnorm(x, mean = 1, sd = 0.5), col = "blue", lwd = lwd)
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Random Variables and Probability Distributions: Normal Dis-
tribution in R

plot(x, pnorm(x), xlab = "x", ylab = "probability", type = "l",
main = "Cumulative distribution function", lwd = lwd)

lines(x, pnorm(x, sd = 2), col = "red", lwd = lwd)
lines(x, pnorm(x, mean = 1, sd = 0.5), col = "blue", lwd = lwd)
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Random Variables and Probability Distributions: Normal Dis-
tribution in R
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Random Variables and Probability Distributions: Normal Dis-
tribution

Let X ∼ N(µ, σ2), and c be some constant

• Adding/subtracting to/from a random variable that is normally
distributed also results in a variable with a normal distribution:
Z = X + c then Z ∼ N(µ+ c , σ2)

• Multiplying or dividing a random variable that is normally
distributed also results in a variable with a normal distribution:
Z = X × c then Z ∼ N(µ× c , (σ × c)2)

• Z-score of a random variable that is normally distributed has
mean 0 and sd = 1
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Random Variables and Probability Distributions: Normal Dis-
tribution

Curve of the standard normal distribution:

• Symmetric around 0

• Total area under the curve is 100%

• Area between -1 and 1 is ~68%

• Area between -2 and 2 is ~95%

• Area between -3 and 3 is ~99.7%
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Random Variables and Probability Distributions: Normal Dis-
tribution

x <- seq(from = -7, to = 7, by = 0.01)
lwd <- 1.5
plot(x, dnorm(x), xlab = "x", ylab = "density", type = "l",

main = "Probability density function", ylim = c(0, 0.9))
abline(v= -1, col = "red")
abline(v= 1, col = "red")
abline(v= -2, col = "green")
abline(v= 2, col = "green")
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Random Variables and Probability Distributions: Normal Dis-
tribution
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Random Variables and Probability Distributions: Normal Dis-
tribution

Curve of the any normal distribution:

• Symmetric around 0

• Total area under the curve is 100%

• Area between -1SD and +1SD is ~68%

• Area between -2SD and +2SD is ~95%

• Area between -3SD and +3SD is ~99.7%
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Random Variables

Expectations, Means, and Variances

For probability distributions, means should not be confused with
sample means

Expectations or means of a random variable have specific meanings
for its the probability distribution
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Means and Expectation

A sample mean varies from sample to sample

Mean of a probability distribution is a theoretical construct and
constant

Example: Age of undergraduate body at A&M
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Means and Expectation

The expectation of a random variable is equal to the sum of all
possibilities weighted by the probabilities

Example: expectation of rolling one die

E(X ) = 1
6 × 1 + 1

6 × 2 + 1
6 × 3 + 1

6 × 41
6 × 51

6 × 6 = 3.5
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Means and Expectation

The expectation of a random variable is equal to the sum of all
possibilities weighted by the probabilities

E(X ) =

{ ∑
x x f (x) if X is discrete∫
x f (x)dx if X is continuous
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Means and Expectation

Remember the lottery!

Expected value: winnings × p(winning) + 0 × p(not winning)
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Means and Expectation

What is E(X ) for the number of heads in 100 coin flips?

E(X ) = 0.5× 1 + 0.5× 1 + ...+ 0.5× 1 = 0.5 ∗ 100 = 50
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Variance

• Variance is standard deviation squared

• Variance in a probability distribution indicates how much
uncertainty exists

• Similar but not the same as sample standard deviation
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Variance

Population variance:
V(X ) = E[{X − E(X )}2] = E(X 2)− {E(X )}2
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Large Sample Theorem

If we have a sample of i.i.d. observations from random variable X
with expectation E(X ), then

X̄n = 1
N

∑N
i=1 Xi → E(X )

In English: As the number of draws increases, the sample mean
approaches the variable’s distribution expectation
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Large Sample Theorem

Examples:

1. Rolling a die, 1000 times

2. Drawing respondents from a population of supporters and
non-supporters for politician A

3. Birthday problem simulation
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Large Sample Theorem

draws <- c(seq(from = 1, to = 1000, by = 10),seq(1000,5000,500))
avgs <- rep(NA, length(draws))
for(i in 1:length(draws)){
samp <-sample(c(1:6),draws[i],replace = T)
avgs[i] <- mean(samp)
}
plot(draws,avgs, type = "l")
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Large Sample Theorem
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Central Limit Theorem

But, we want to learn from samples about the true underlying
distribution (population)!

How do we know when the sample mean is close to the population
expectation?
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Central Limit Theorem

Here is where it gets crazy!

CLT: distribution of sample means approaches a normal distribution
as number of samples increases!
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Central Limit Theorem

Example:

1. Experiment: flip a coin 10 times and record the number of
heads

2. Do experiment above 1000 times

What is E(X) if X = # of Heads?
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Central Limit Theorem

avgs <- rep(NA,1000)
for(i in 1:1000){
samp <- rbinom(1000,10,p=0.5)
avgs[i] <- mean(samp)
}
plot(density(avgs))
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Central Limit Theorem

Mean across all samples = 4.96
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Central Limit Theorem

In fact, the z-score of the sample mean converges in distribution to
the standard normal distribution!

Theorem: Z = X n−E(X n)√
V(X )

= X−E(X )√
V(X )/n

approaches to the standard

Normal distribution N (0, 1)
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Central Limit Theorem

Remember E (X ) = n× p and V (X ) = n× p× (1− p) for binomial

z_avgs <- rep(NA,1000)
for(i in 1:1000){
samp <- rbinom(1000,10,p=0.5)
z_avgs[i] <- (mean(samp)- 5)/sqrt(2.5/1000)
}
plot(density(z_avgs))

Florian Hollenbach 46



Central Limit Theorem
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CLT: Example rolling a die 10 times

avgs <- rep(NA,1000)
for(i in 1:1000){
samp <- sample(c(1:6),10, replace = T)
avgs[i] <- sum(samp)
}
plot(density(avgs))
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Central Limit Theorem
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Central Limit Theorem: Why do we care?

• Hypothetically repeated polls with sample size N

• Xi = 1 if support for Jimbo Fisher, Xi = 0 if supports Kevin
Sumlin

• Probability model:
∑n

i=1 Xi ∼ Binom(n, p)

• Jimbo’s support rate: X n =
∑n

i=1 Xi/n

• LLN: X n −→ p as n tends to infinity

• CLT: X n
approx.∼ N

(
0, p(1−p)n

)
for a large n
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