Political Science 209 - Fall 2018

Probability II

Florian Hollenbach
8th November 2018

Conditional Probability

The annual death rate among people WHO KNOW THAT STATISTIC IS ONE IN SIX.

Conditional Probability

Sometimes information about one event can help inform us about
likelihood of another event
Examples?

Conditional Probability

Sometimes information about one event can help inform us about likelihood of another event

Examples?

- What is the probability of rolling a 5 and then a 6 ?
- What is the probability of rolling a 5 and then a 6 given that we rolled a 5 first?

Conditional Probability

If it is cloudy outside, gives us additional information about likelihood of rain

If we know that one party will win the House, makes it more likely that party will win certain Senate races

Independence

If the occurrence of one event (A) gives us information about likelihood of another event, then the two events are not independent.

Independence

If the occurrence of one event (A) gives us information about likelihood of another event, then the two events are not independent.

Independence of two events implies that information about one event does not help us in knowing whether the second event will occur.

Independence

For many real world examples, independence does not hold Knowledge about other events allows us to improve guesses/probability calculations

Independence

When two events are independence, the probability of both happening is equal to the individual probabilities multiplied together

Conditional Probability

P(A $\mid B)$
Probability of A given/conditional that B has happened

Conditional Probability

$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{P\left(\text { Aand }^{2}\right)}{P(B)}$
Probability of A and B happening (joint) divided by probability of B happening (marginal)

Conditional Probability

Definitions:
$P(A$ and $B)$ - joint probability
$P(A)$ - marginal probability

Conditional Probability

$P($ rolled 5 then 6$)=?$

Conditional Probability

$$
\begin{aligned}
& P(\text { rolled } 5 \text { then } 6)=? \\
& P(\text { rolled } 5 \text { then } 6)=\frac{1}{36} \\
& P(\text { rolled } 5 \text { then } 6 \mid 5 \text { first })=\frac{P(5 \text { then } 6)}{P(5)}
\end{aligned}
$$

Conditional Probability

$$
\begin{aligned}
& P(\text { rolled } 5 \text { then } 6)=? \\
& P(\text { rolled } 5 \text { then } 6)=\frac{1}{36} \\
& P(\text { rolled } 5 \text { then } 6 \mid 5 \text { first })=\frac{P(5 \text { then } 6)}{P(5)} \\
& \frac{\frac{1}{36}}{\frac{1}{6}}=\frac{1}{6}
\end{aligned}
$$

Conditional Probability

The probability that it is Friday and that a student is absent is 0.03. What is the probability that student is absent, given that it is Friday?
$\mathrm{P}($ absent \mid Friday $)=$?

Conditional Probability

The probability that it is Friday and that a student is absent is 0.03. What is the probability that student is absent, given that it is Friday?
$\mathrm{P}($ absent \mid Friday $)=$?
$\mathrm{P}($ absent \mid Friday $)=\frac{0.03}{0.2}=0.15$

Conditional Probability

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{P(\text { Aand } B)}{P(B)}
$$

Also means:
$P(A$ and $B)=P(A \mid B) P(B)$

Independence

If A and B are independent, then

- $P(A \mid B)=P(A) \& P(B \mid A)=P(B)$
- $P(A$ and $B)=P(A) \times P(B)$

Independence

If $A \mid C$ and $B \mid C$ are independent, then

- $P(A$ and $B \mid C)=P(A \mid C) \times P(B \mid C)$

Probability Problems

What is the probability of drawing any card between 2 and 10 , or jack, queen, king in any color?

Probability Problems

What is the probability of drawing two kings from a full deck of cards?

Probability Problems

What is the probability of drawing two kings from a full deck of cards?

$$
P(2 \text { kings })=\frac{4}{52} \times ?
$$

Probability Problems

What is the probability of drawing two kings from a full deck of cards?

$$
\begin{aligned}
& \mathrm{P}(2 \text { kings })=\frac{4}{52} \times ? \\
& \mathrm{P}(2 \text { kings })=\frac{4}{52} \times \frac{3}{51}=\frac{12}{2652}=\frac{1}{221}
\end{aligned}
$$

Probability Problems

Annual income	Took 209	Took 309	TOTAL
Under $\$ 50,000$	36	24	60
$\$ 50,000$ to $\$ 100,000$	109	56	165
over $\$ 100,000$	35	40	75
Total	180	120	300

Is the probability of making over $\$ 100,000$ and the probability of having taken 309 independent?

Probability Problems

Annual income	Took 209	Took 309	TOTAL
Under $\$ 50,000$	36	24	60
$\$ 50,000$ to $\$ 100,000$	109	56	165
over $\$ 100,000$	35	40	75
Total	180	120	300

Is the probability of making over $\$ 100,000$ and the probability of having taken 309 independent?
$\mathrm{P}($ over $\$ 100 \mathrm{k}$ \& 309 $)=\mathrm{P}($ over $\$ 100 \mathrm{k}) \times \mathrm{P}(309)$?

Probability Problems

Annual income	Took 209	Took 309	TOTAL
Under $\$ 50,000$	36	24	60
$\$ 50,000$ to $\$ 100,000$	109	56	165
over $\$ 100,000$	35	40	75
Total	180	120	300

What is the probability of any student making over $\$ 100,000$?

Probability Problems

Annual income	Took 209	Took 309	TOTAL
Under $\$ 50,000$	36	24	60
$\$ 50,000$ to $\$ 100,000$	109	56	165
over $\$ 100,000$	35	40	75
Total	180	120	300

What is the probability of a student making over $\$ 100,000$, conditional that he took 309?

Probability Problems

Annual income	Took 209	Took 309	TOTAL
Under $\$ 50,000$	36	24	60
$\$ 50,000$ to $\$ 100,000$	109	56	165
over $\$ 100,000$	35	40	75
Total	180	120	300

What is the probability of a having taken 309 , conditional on making over $\$ 100,000$?

The Monty Hall Paradox!

What is the Monty Hall Paradox?

The Monty Hall Paradox!

The Monty Hall Paradox!

What is the probability of winning a car when not switching?

$$
\mathrm{P}(\mathrm{car})=?
$$

The Monty Hall Paradox!

What is the probability of winning a car when not switching? $P($ car $)=\frac{1}{3}$

The Monty Hall Paradox!

What is the probability of winning a car when switching?

The Monty Hall Paradox!

What is the probability of winning a car when switching?
Consider two scenarios: picking door with car first and picking door with goat first

The Monty Hall Paradox: switching

Consider two scenarios: picking door with car first and picking door with goat first

1. What is the probability of getting the car when switching after picking the car first?
2. What is the probability of getting the car when switching after picking a goat first?

The Monty Hall Paradox: switching

$P($ car when switching $)=P($ car \mid car first $) \times P($ car first $)+P($ car \mid goat first) $\times P$ (goat first)

The Monty Hall Paradox: switching

$P($ car when switching $)=P($ car \mid car first $) \times P($ car first $)+P($ car \mid goat first) $\times P$ (goat first)
$P($ car when switching $)=0 \times \frac{1}{3}+1 \times \frac{2}{3}$

The Monty Hall Paradox: switching

$P($ car when switching $)=P($ car \mid car first $) \times P($ car first $)+P($ car \mid goat first) $\times P$ (goat first)
$P($ car when switching $)=0 \times \frac{1}{3}+1 \times \frac{2}{3}$
$P($ car when switching $)=\frac{2}{3}$

The Monty Hall Paradox: in R

```
sims <- 1000
doors <- c("goat", "goat", "car")
result.switch <- result.noswitch <- rep(NA, sims)
for (i in 1:sims) {
    ## randomly choose the initial door
first <- sample(1:3, size = 1)
result.noswitch[i] <- doors[first]
remain <- doors[-first] # remaining two doors
## Monty chooses one door with a goat
monty <- sample((1:2)[remain == "goat"], size = 1)
result.switch[i] <- remain[-monty]
}
mean(result.noswitch == "car")
mean(result.switch == "car")
```


Bayes' Rule/Theorem

How should we update our beliefs about event A after learning about some data related to the event?

Bayes' Rule/Theorem

How should we update our beliefs about event A after learning about some data related to the event?

Example: What is the probability of a person developing lung cancer?

Bayes' Rule/Theorem

How should we update our beliefs about event A after learning about some data related to the event?

Example: What is the probability of a person developing lung cancer?

How does the probability change once we learn about the person's smoking habits?

Bayes Rule/Theorem

$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{P(B \mid A) P(A)}{P(B)}$
$P(A)$: prior probability of event A
$P(A \mid B)$: posterior probability of event A given observed data B

Bayes Rule/Theorem

$P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$
$P(A)$: prior probability of event A
$P(A \mid B)$: posterior probability of event A given observed data B
$P(B \mid A)$: probability of observing B given A

Bayes Rule/Theorem

$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{P(B \mid A) P(A)}{P(B)}$
$P(A)$: prior probability of event A
$P(A \mid B)$: posterior probability of event A given observed data B
$P(B \mid A)$: probability of observing B given A
$P(B \mid A) \times P(A) ?$

Bayes Rule/Theorem

$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{P(B \mid A) P(A)}{P(B)}$
$P(A)$: prior probability of event A
$P(A \mid B)$: posterior probability of event A given observed data B

Bayes Rule/Theorem

$P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$
$P(A)$: prior probability of event A
$P(A \mid B)$: posterior probability of event A given observed data B
$P(B \mid A)$: probability of observing B given A

Bayes Rule/Theorem

$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{P(B \mid A) P(A)}{P(B)}$
$P(A)$: prior probability of event A
$P(A \mid B)$: posterior probability of event A given observed data B
$P(B \mid A)$: probability of observing B given A
$P(B \mid A) \times P(A)=P(B$ and $A)$

Bayes Rule/Theorem

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(\text { Band } A)}{P(B)}
$$

Bayes Rule/Theorem

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)}
$$

Bayes Rule/Theorem

- Does your doctor know Bayes' rule? Cause he/she should!
- Example of medical tests:
- every test comes with a reliability/accuracy
- remember: false positive, false negative, etc

Bayes Rule/Theorem

What is the probability of being pregnant, given that you have a positive test?

$$
P(\mathrm{p} \mid+)=\frac{P(+\mid p) P(p)}{P(+)}
$$

Bayes Rule/Theorem

What is the probability of being pregnant, given that you have a positive test?
$P(\mathrm{p} \mid+)=\frac{P(+\mid p) P(\rho)}{P(+)}$
Decompose $\mathrm{P}(+)$, say test is 99% accurate

Bayes Rule/Theorem

What is the probability of being pregnant, given that you have a positive test?

$$
\mathrm{P}(\text { preg } \mid+)=\frac{P(+\mid p) P(p)}{P(+)}=\frac{P(+\mid p) P(p)}{P(+\mid p) P(p)+P(+\mid \text { not } p) P(\text { not } p)}
$$

Bayes Rule/Theorem

What is the probability of being pregnant, given that you have a positive test?

$$
\mathrm{P}(\mathrm{p} \mid+)=\frac{P(+\mid p) P(p)}{P(+\mid p) P(p)+P(+\mid \text { not } \mathrm{p}) P(\text { (not } \mathrm{p})}
$$

Bayes Rule/Theorem

What is the probability of being pregnant, given that you have a positive test?

$$
\begin{aligned}
\mathrm{P}(\mathrm{p} \mid+) & =\frac{P(+\mid p) P(p)}{P(+\mid p) P(p)+P(+\mid \text { not } \mathrm{p}) P(\text { not } \mathrm{p})} \\
\mathrm{P}(\mathrm{p} \mid+) & =\frac{0.99 P(p)}{0.99 P(p)+0.05 P(\text { not } \mathrm{p})}
\end{aligned}
$$

Bayes Rule/Theorem

What is the probability of being pregnant, given that you have a positive test?

$$
\begin{aligned}
\mathrm{P}(\mathrm{p} \mid+) & =\frac{P(+\mid p) P(p)}{P(+\mid p) P(p)+P(+\mid \text { not } \mathrm{p}) P(\text { not } \mathrm{p})} \\
\mathrm{P}(\mathrm{p} \mid+) & =\frac{0.99 P(p)}{0.99 P(p)+0.05 P(\text { not } \mathrm{p})} \\
\mathrm{P}(\mathrm{p} \mid+) & =\frac{0.990 .5}{0.99 \times 0.5+0.05 \times 0.5}=0.95
\end{aligned}
$$

Bayes Rule/Theorem

But what happens if your prior probability is stronger?

Bayes Rule/Theorem

But what happens if your prior probability is stronger?

$$
P(\mathrm{p} \mid+)=\frac{0.99 P(p)}{0.99 P(p)+0.05 P(\text { not } p)}
$$

Bayes Rule/Theorem

But what happens if your prior probability is stronger?

$$
\begin{aligned}
& \mathrm{P}(\mathrm{p} \mid+)=\frac{0.99 P(p)}{0.99 P(p)+0.05 P(\text { not } \mathrm{p})} \\
& \mathrm{P}(\mathrm{p} \mid+)=\frac{0.990 .2}{0.99 \times 0.2+0.05 \times 0.8}=0.83
\end{aligned}
$$

Bayes Rule/Theorem

But what happens if your prior probability is stronger?

$$
\mathrm{P}(\mathrm{p} \mid+)=\frac{0.990 .05}{0.99 \times 0.05+0.01 \times 0.95}=0.51
$$

Bayes Rule/Theorem

Many of our tests are not this good and disease is very rare:

- high-risk for down syndrome test
- $P(+\mid D S)=0.86$
- $P(+\mid$ not $D S)=0.05$
- $P(D S)=0.003$

Bayes Rule/Theorem

Many of our tests are not this good and disease is very rare:

- high-risk for down syndrome test
- $P(+\mid D S)=0.86$
- $P(+\mid$ not $D S)=0.05$
- $P(D S)=0.003$

$$
\mathrm{P}(\mathrm{DS} \mid+)=\frac{P(+\mid D S) P(D S)}{P(+\mid D S) P(D S)+P(+\mid \text { not } D S) P(\text { not } D S)}
$$

Bayes Rule/Theorem

Many of our tests are not this good and disease is very rare:

- high-risk for down syndrome test
- $P(+\mid D S)=0.86$
- $P(+\mid$ not $D S)=0.05$
- $P(D S)=0.003$

$$
\begin{aligned}
\mathrm{P}(\mathrm{DS} \mid+) & =\frac{P(+\mid D S) P(D S)}{P(+\mid D S) P(D S)+P(+\mid \text { not DS }) P(\text { not DS })} \\
\mathrm{P}(\mathrm{DS} \mid+) & =\frac{0.86 \times 0.003}{0.86 \times 0.003+0.05 * 0.997}
\end{aligned}
$$

Bayes Rule/Theorem

Many of our tests are not this good and disease is very rare:

- high-risk for down syndrome test
- $P(+\mid D S)=0.86$
- $P(+\mid$ not $D S)=0.05$
- $P(D S)=0.003$

Bayes Rule/Theorem

Many of our tests are not this good and disease is very rare:

- high-risk for down syndrome test
- $P(+\mid D S)=0.86$
- $P(+\mid$ not $D S)=0.05$
- $P(D S)=0.003$

$$
\mathrm{P}(\mathrm{DS} \mid+)=\frac{P(+\mid D S) P(D S)}{P(+\mid D S) P(D S)+P(+\mid \text { not } \mathrm{DS}) P(\text { not } \mathrm{DS})}
$$

Bayes Rule/Theorem

Many of our tests are not this good and disease is very rare:

- high-risk for down syndrome test
- $P(+\mid D S)=0.86$
- $P(+\mid$ not $D S)=0.05$
- $P(D S)=0.003$
$\mathrm{P}(\mathrm{DS} \mid+)=\frac{P(+\mid D S) P(D S)}{P(+\mid D S) P(D S)+P(+\mid \text { not } \mathrm{DS}) P(\text { not } \mathrm{DS})}$
$P(\mathrm{DS} \mid+)=\frac{0.86 \times 0.003}{0.86 \times 0.003+0.05 * 0.997}=0.049$
Changes with age!

