Regression lines minimize distance to all points

Tax Revenue vs logged GDP

But the line does not go through all points

Tax Revenue vs logged GDP

Each point is associated with an error:

 prediction at x - actual value of y at x

Error = prediction - actual y

But regression lines are not perfect

We always measure the error in terms of prediction error in y! Why?

Example of error calculation

Slope of regression line: 5.92*0.19/2.84 = 0.4

Example of error calculation

Slope of regression line: 0.4

What is the prediction for $x=27.35 ? ? ? ?$

Example of error calculation

Slope of regression line: 0.4

What is the prediction for $x=27.35 ? ? ? ?$

Example of error calculation

What is the prediction for $x=27.35 ? ? ? ?$
y_pred = 20.16
Actual Y: 9.67
Error = 9.67-20.16 =-10.49

Coach Sumlin asked for a prediction of the number of running plays that the Florida Gators will run on Saturday given that 2 inches of rain are expected. The correlation between rain in inches and number of running plays is 0.6 . The average amount of rain in Gainesville is 0.5 inches with a standard deviation of 1 . The Florida Gators run 35 running plays on average, with a standard deviation of 8.6. Based on 2 inches of rain, what is your prediction for the number of run plays executed by the Gators on Saturday?

But we had 0 inches of rain. What is the prediction?

32.42 predicted run plays

Actual number of run plays: 42

Error: 42-32.42 = 9.58

Recall the root mean squared error

- $\mathrm{RMS}=$ square root of the mean of the squared errors
- Approximately equal to the average of how far points are above and below the line
- RMS is always in the unit of the dependent variable (the variable to be predicted - y)
- Why can't we just take the average of the errors?

But regression lines are not perfect

RMS = sqrt(mean ((actual-predicted)^2))
Tax Revenue vs logged GDP

Recall the root mean squared error

- What is the root mean squared error of using the average of y to predict y ?

Recall the root mean squared error

- What is the root mean squared error of using the average of y to predict y ?
- The standard deviation!

Computing the rms for the regression

- In theory, we could calculate the rms by doing the calculation for every point in our data
- Luckily, we have a formula that makes calculation much simpler: rms_regression = SD_y * sqrt(1-r^2)
- Again: rms is in the same units as the dependent variable
- In earlier example, rms would be in tax as \% of GDP

Average Taxation as \% GDP vs logged GDP

Plotting Errors or Residuals

Regression error vs logged GDP

Plotting Errors or Residuals

Often the error is also called the residuals

- We can plot the error/residuals against the x-axis
- The residuals should average out to zero
- Regression line through residuals should be flat
- If residuals look funnel shaped, things are problematic

Homoscedasiticity

- Spread around the regression line is similar (the same) along the whole line
- The accuracy of predictions given the regression line should be the same along the whole line
- Football-shaped scatter plot
- If this condition is violated, we say the regression suffers from heteroscadasticity

Normal approximation in vertical strips

- What is the new average?
- What is the new SD?
- Everything else stays the same

Exercise

- Law school finds the following relationship btw. LSAT scores and first-year scores:
- Average LSAT: 162, SD = 6
- Average first-year score: $68, \mathrm{SD}=10$,
- $\mathrm{R}=0.6$
A. What is the percentage of students with first-year scores above 75 ?
B. Of students who scored 165 on LSAT, what percentage had first-year score greater than 75 ?

Exercise

- Law school finds the following relationship btw. LSAT scores and first-year scores:
- Average LSAT: 162, SD = 6
- Average first-year score: $68, \mathrm{SD}=10$,
- $\mathrm{R}=0.6$
A. What is the percentage of students with first-year scores above 75 ?
B. Of students who scored 165 on LSAT, what percentage had first-year score greater than 75 ?

Exercise

- Correlation in height for 66 boys:
- Average height at 6,3 feet and 10 inches, $\mathrm{SD}=1.7$ inches
- Average height at 18,5 feet and 10 inches, $S D=2.5$
- $\mathrm{R}=0.8$
A. RMS for regression predicting height at 18 from height at 6
B. RMS for regression predicting height at 6 from height at 18

The full regression line

- Remember the formula of a line: $y=m x+b$
- So far we have only talked about m

The full regression line

- Remember the formula of a line: $y=m x+b$
- So far we have only talked about m
- But what about b?
b (the intercept) is the point on y
where the line crosses the x axis at zero

Average Taxation as \% GDP vs logged GDP

Finding the intercept

1. we find the slope
2. Then we find Y at $x=0$

Average Taxation as \% GDP vs logged GDP

Mean_y = 18.87, SD_y = 5.92
Mean_x $=24.09, S D _x=2.84, r=0.19$

- The intercept does not always mean much
- It might be outside of the range of reasonable cases
- For example, predicting weight from height, a height of 0 makes little sense

Multiple regression

- Often we have additional variables that should be used in our model
- There might be things that are confounding factors for the relationship we are interested in
- The regression actually allows us to add other variables and "control" for these confounders

Multiple regression

- let's say we estimate effect of income on voting
- But education level might matter too!
- We can include both in the regression model!
- Estimate effect of smoking on life expectancy
- Might want to control for exercise, nutrition, family health

Multiple regression

- In two-variable case line was drawn to minimize the error for each point
- Multiple regression is the same, but we are in a higher dimensional space (!!)

Multiple regression

Notation/Interpretation

$$
\begin{aligned}
& Y=\alpha+\beta X \\
& Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2} \\
& Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3} \ldots
\end{aligned}
$$

- Each coefficient (beta) in the multiple regression is the linear change associated with a change of 1 in the associated variable, but holding all other variables constant
- Alpha is the intercept, or the predicted value when all X are equal to zero

