Regression in R

Fitting a Linear Regression Model

In these notes, we are going to re-analyze the data used in the notes on correlation. The necessary variables are
in the data set gamson.csv. You might remember that the data frame gamson has two variables: seat_share
and portfolio_share. Seatshare is the share of seats a party holds in parliament, while portfolio is the
share of ministerial posts in coalition governments a party holds.

load data

we can also load rds files with readRDS instead of read.csv() for csv files
gamson <- readRDS("~/Documents/GitHub/polisci209_£fall2017/img/images/data/gamson.rds")
note: make sure the file 'gamson.csv' is in the 'data' subdirectory

and your working directory s set appropriately.

quick look at data
tibble::glimpse (gamson)

Observations: 826

Variables: 2

$ seat_share <dbl> 0.02424242, 0.46060607, 0.51515150, 0.47204968...
$§ portfolio_share <dbl> 0.09090909, 0.36363637, 0.54545456, 0.45454547. ..

This is a particularly useful data set on which to estimate a linear regression model. Gamson’s Law states
that “cabinet portfolios will be distributed among government parties in strict proportion to the number of
seats that each party contributes to the government’s legislative majority.”

Gamson’s Law implies that legislative seat shares should (according to the Law) relate to government
portfolios linearly, with an intercept of zero and a slope of one. The slope should equal one because a one
percentage point increase in seat share ought to lead to a one percentage point increase in portfolio share, at
least on average. The intercept should equal zero because we expect a party with 0% of the legislative seats
to get 0% of the government portfolios.

To fit a linear regression model, we use the 1m() function. (The “1” stands for “linear” and the “m” stands
for “model.”)

The 1m() function takes two arguments:

e The first argument to 1m() is called a formula. For simple linear models with only one predictor, the
formula has the form y ~ x, where y is the dependent variable (or outcome variable) and x is the
independent variable (or explanatory variable or predictor). I usually put the formula first and leave
the argument implicit.

e The second argument to 1lm() is the data argument. This will be the data frame in which to find x and
y. I usually put this argument second and make it explicit.

In the case of the data frame gamson, our y is portfolio_share, our x is seat_share, and our data is
gamson.

fit linear model
fit <- lm(portfolio_share ~ seat_share, data = gamson)

Now we have used the 1m() function to fit the model and stored the output in the object fit. So what type
of object is £it? It turns out that 1m() outputs a new type of object called a 1ist () which is like a data
frame, but more general. Whereas we think of a data frame as a box of equal-length vectors, we can think of
lists as a box of objects. The objects in the list can be scalars, functions, vectors, data frames, or another list.
This turns out to not be practically important to us, since we will not work directly with lists in this class.

Instead of working directly with fit, which is a list, we’ll use other function to compute quantities that
interest us.

Model Coefficients

First, we might care about the coefficients. In the case of a model with only one independent variable
(explanatory variable or predictor), we’ll just have an intercept and a slope. The coef () function takes one
argument—the output of the 1m() function, which we stored as the object fit—and returns the estimated
coefficients.

coef (fit)

(Intercept) seat_share
0.069135568 0.79158398

We can see that Gamson’s Law isn’t exactly correct, a one-unit percentage point increase in vote share least
to about a 0.8 unit increase in the portfolio share. Also, the intercept is slightly above zero, suggesting that
smaller parties seem to have a disproportionate advantage.

R.M.S. Error

We might also be interested in the r.m.s. error of the model. The function residuals() works just like
coef (), except it returns the model errors (i.e., “residuals”) instead of the model coefficients. Surprisingly,
there is no function that automatically calculates the r.m.s. in R (without loading a package), so we’ll have
to calculate it ourselves.

one step at a time, T.m.s. error
errors <- residuals(fit)

s <- errors”2

m <- mean(s)

r <- sqrt(m)

print(r) # r.m.s. error

[1] 0.06880963

all at once
sqrt (mean(residuals(fit)~2)) # r.m.s. error

[1] 0.06880963

For now, all we are really interested in is the coefficients and the r.m.s. error, so these two are all we need.

Fitting a Line in ggplot

Whenever we draw a scatterplot, we’ll usually want to draw the regression line through the data. That is
done by adding geom_smooth() to the plot. We’ll usually want to supply two arguments to geom_smooth ().
First, we’ll want to set method = "1m" so that geom_smooth() fits a line through the data, as opposed to a
smooth curve. Second, we’ll want to set se = FALSE so that geom_smooth() does not include the standard
error, which we haven’t discussed yet (that’s the last third of the class).

load packages
library(ggplot2)

create scatterplot with regression line
ggplot(gamson, aes(x = seat_share, y = portfolio_share)) +

geom_point() +
geom_smooth(method = "Im", se = FALSE)

0.75-

I 0.50-

0 share

portfoli

0.25-

0'00 - 1 1 1 1 1
0.00 0.25 0.50 0.75 1.00

seat_share

Alpha Transparency

Sometimes, when points overlap substantially, we need to make the points somewhat transparent. We have

seen this idea for density plots that overlap as well. To make the points transparent, we simply supply the

alpha argument to geom_point (). As before, you need to experiment with values of alpha between zero

and one to find the appropriate level of transparency

create scatterplot

ggplot(gamson, aes(x
geom_point(alpha =
geom_smooth (method

seat_share, y = portfolio_share)) +
.2) +
"Im", se = FALSE)

o

0.75-

0.50 -

portfolio_share

0.25-

0.00 0.25 0.50 0.75 1.00
seat_share

Jittering

While it is not the case with these data, in many cases, data tend to take on only a few values. For example,
number of children tends to be either 0, 1, 2, 3, or 4, with very few families having 5 or more children. Even
variables like age make the scatterplot appear clumpy at the positive integers. These clumps, which appear
as columns and/or rows of points in the scatterplot, make the scatterplot difficult to interpret, since many
points are positioned directly on top of one another.

To see this, let’s load a new data set. This data sets contains several feeling thermometer ratings from the
2012 American National Election Study (ANES), which is a large, representative survey of Americans. In
this in-person survey, the interviewer asks many questions. For the feeling thermometers, the surveyor asks
the respondent to rate individuals and groups on a scale from 0 degrees to 100 degrees, with the following
scale in hand.

100" Very warm or favorabée feeling
B5* Omiltg waie oF favorable fealing
TO" Fakrly wadm oF liverable fealing

ED® A bl more warm or (aeorable
fealing tham cold Tesling

i 0" Mo feswling at all

a0* A Bt moee cobd o7 wnfiveaahile

fealirg than warm foallng

30* Fairly cold or unfaworablo

feoling
15* Quiite ¢old o unfavorabla
teeling
r] Veory cold er unfavarsble fealing

Figure 1: Scale for ANES feeling thermometer.
getwd ()

[1] "/Users/florianhollenbach/Documents/GitHub/polisci209_fall2017/assignments"

load data

therms <- readRDS("~/Documents/GitHub/polisci209_fall2017/img/images/data/therms.rds")
note: make sure the file 'therms.rds' %s in the 'data' subdirectory

and your working directory ts set appropriately.

quick look at data
tibble: :glimpse (therms)

Observations: 5,914
Variables: 36

$ sex <chr> "Female", "Male", "Female", "Fema...
$ party_id <fctr> Democrat, Democrat, Democrat, De...
$ age <dbl> 86, 79, 72, 54, 35, 80, 50, 70, 2...
$ education <ord> No High School Degree, No High Sc...
$ race <fctr> Black, Non-Hispanic, Black, Non-...

$ ft_barack_obama <dbl> NA, 100, 100, 100, 100, 100, 100,...
§ ft_mitt_romney <dbl> NA, O, O, O, 50, 30, 15, 60, 40, ..
$ ft_ann_romney <dbl> NA, 15, 0, O, 50, 30, 15, 70, 50,...
$ ft_michelle_obama <dbl> NA, 100, 100, 100, 100, 100, 100,...
$ ft_joe_biden <dbl> NA, 95, 100, O, 85, 75, 100, 85,

$ ft_paul_ryan <dbl> NA, O, O, O, 60, 50, 30, 70, 50,

$ ft_hillary_clinton <dbl> 100, 100, 100, 100, 70, 78, 100, ...
$ ft_george_w_bush <dbl> 0, 0, 15, 0, 30, NA, 15, 0, 30, 4...
$ ft_john_roberts <dbl> NA, 100, 60, O, 50, 60, 40, 100, ..
$ ft_christian_fundamentalists <dbl> NA, 60, NA, O, 40, 45, 70, 85, 50...
$ ft_catholics <dbl> NA, 70, 100, 85, 85, 35, 70, 100,...
$ ft_feminists <dbl> NA, 70, 60, 85, 85, 35, 60, 85, 5...
$ ft_federal_government <dbl> NA, 85, 100, 60, 70, 25, 85, 100,...
$ ft_liberals <dbl> NA, 85, 60, 100, 85, 50, 50, 70, ...
$ ft_middle_class_people <dbl> NA, 70, 100, 100, 100, 50, 70, 10...
$ ft_unions <dbl> NA, 84, 85, 85, 60, 45, 70, 85, 7...
$ ft_poor_people <dbl> NA, 70, 100, 100, 60, 75, 30, 85,...
§ ft_military <dbl> NA, 60, 100, O, 100, 35, 100, 85,...
$ ft_big_business <dbl> NA, 40, 70, 100, 60, 45, 85, 100,...
$ ft_welfare_recipients <dbl> NA, 70, 70, 100, 40, 35, 30, 85, ...
$ ft_conservatives <dbl> NA, 30, 70, 85, 40, 20, 70, 85, 4...
$ ft_working_class <dbl> NA, 70, 100, 100, 100, 65, 85, 85...
$ ft_supreme_court <dbl> NA, 70, 85, 60, 70, 25, 60, 100, ..
$ ft_gays_and_lesbians <dbl> NA, 85, 50, 0, 70, 50, 85, 70, 50...
$ ft_congress <dbl> NA, 15, 85, 60, 40, 25, 50, 85, 5...
$ ft_rich_people <dbl> NA, O, 40, 60, 70, 35, 15, 100, 5...
$ ft_muslims <dbl> NA, 85, 60, 60, 60, 35, 70, 70, 5...
$ ft_christians <dbl> NA, 70, 100, 85, 85, 25, 40, 85, ...
$ ft_atheists <dbl> NA, 70, O, 0, 40, 50, 30, 70, 40,...
$ ft_mormons <dbl> NA, 70, 40, 85, 50, 30, 15, 85, 5...
$ ft_tea_party <dbl> NA, O, O, 100, 30, 45, 30, 100, 5...

As you can see, the variable names in these data refer to the individual or group the surveyor asks the
respondent to rate.

One of the most interesting patterns in these data is the relationship between the feeling thermometers for
Republican presidential candidate Mitt Romney and his wife Ann Romney.

In these data, you can see a clear clumping at points like 50-50. Notice that I've used a small value of alpha
= 0.2 and a theme with a white background to make the transparency as effective as possible, yet so many
points fall on top of each other in some locations that the points show up as completely black.

create scatterplot

ggplot (therms, aes(x
geom_point(alpha =
geom_smooth (method
theme_minimal ()

ft_mitt_romney, y = ft_ann_romney)) +
.2) +
"Im", se = FALSE) +

o

100 °)) ° ° ° Q [o e)

75
>
)
c
IS
o
h| 50
c
c
ﬂs|
R
25
° e @0 ©o0 © o@ 0o o® ° ®
e o o ‘@ o
ecoe o @
0 8 o ° ° ° ° ° ° ° °
0 25 50 75 100

ft_mitt_romney

Because we use alpha transparency in coloring the points, we can see the substantial overlap in the points.
We can a tiny bit of random noise to the vertical and horizontal location to the points to so that each
point can be seen more easily. We do this be supplying the argument position = "jitter" to the function
geom_point (). Note that we can use alpha transparency and jittering in combination.
create scatterplot
ggplot (therms, aes(x = ft_mitt_romney, y = ft_ann_romney)) +

geom_point(alpha = 0.2, position = "jitter") +

geom_smooth (method "Im", se = FALSE) +

theme_minimal ()

100 @ € ® ® ® @ [] $ ® @ e L ’
¢
@ ® ® @& «a
® ® L] e
@ @ o
L]
75 *®
>
(0]
c
IS
o
h| 50
c
c
m|
=
25 ®
®
,) ® ®° @ ® o @ @ ® & T
* e ® =
® o0 ™ ®
0 F‘ & L ® - £ ® e o @ ® o® o ®
0 25 50 75 100

ft_mitt_romney

To make the jittering more effective, we can make the points smaller by supplying a size = 0.1 argument
to geom_point ().

create scatterplot

ggplot(therms, aes(x = ft_mitt_romney, y = ft_ann_romney)) +
geom_point(alpha = 0.2, position = "jitter", size = 0.1) +
geom_smooth(method = "1m", se = FALSE) +
theme_minimal ()

100 . . 2 : - . .- e - -

75
>
(0]
c
€
o
h| 50
c
c
)
=
25
- - -]
v
0 s - v " >
0 25 50 75 100
ft_mitt_romney
Prediction

One important use of the linear regression model is prediction. For prediction problems, there are typically
three data sets.

1. A training set. The researcher uses this data set to fit the model. In our case, this will be a linear
regression model.

2. A prediction set. This data set contains the predictors, but not the outcome, for several new cases.
This might be new people, states, or years. Based on the variables in this data set, the researcher
produces a prediction.

3. A test set. The same as the prediction set, but with the outcome variable included. The researcher
uses the test set to evaluate her modeling approach.

The taxes data have a training set and a prediction set. For these data, the outcome we’re trying to predict
is tax_change which is the legislated changes in tax revenue (in billions) for the 50 U.S. states from 1988 to
2009. The prediction set contains the 50 U.S. states for 2010 and 2011.

For our purposes, a good predictive model minimizes the r.m.s. error of the predictions in the prediction set
(although we can’t know the r.m.s. in the prediction set—there’s no outcome to compare our predictions to.
After all, it wouldn’t be a prediction otherwise.)

load data

training_set <- readRDS("~/Documents/GitHub/polisci209_£fall2017/img/images/data/taxes-training.rds")
prediction_set <- readRDS("~/Documents/GitHub/polisci209_£fall2017/img/images/data/taxes-prediction.rds"

quick look at data
tibble::glimpse(training_set)

Observations: 1,055
Variables: 21
state <chr> "Alabama", "Alabama", "Alabama"...
state_abbr <fctr> AL, AL, AL, AL, AL, AL, AL, AL...
year <int> 1988, 1989, 1990, 1991, 1992, 1...
#it tax_change <dbl> 0, 0, 47, 22, 100, 0, 0, O, O,
personal_income <dbl> 0.060, 0.063, 0.067, 0.072, 0.0
percent_change_personal_income <dbl> 7.84, 9.09, 5.00, 6.35, 7.46, 4...
estimated_imbalance <int> 8, 67, -3, 0, 32, 119, 0, 43, 4...
taxes_last_year <dbl> 3.4, 3.7, 3.8, 3.9, 4.2, 4.6, 4

0

##
##

gov_request
lag_tax_change

<dbl> 0, O, 55, 0, 520, 0, O, O, O,
<dbl> 0.0, 0.0, -4.8, 0.0, 0.0, 0.0, ...
<dbl> 4.000000, 4.100000, 4.100000, 4...

$ population
percent_change_population <dbl> 0.00, 0.00, 2.50, 0.00, 2.44, 0...
§ gov_party <fctr> Republican, Republican, Republ...

##
##
##
##
##
##
##

house_dem_share
senate_dem_share
citizen_ideology
year_of_biennium
change_in_gov_party
change_in_house_dem_share
change_in_senate_dem_share

<dbl> 0.8476190, 0.8333333, 0.8333333...
<dbl> 0.8571429, 0.8235294, 0.8235294...
<dbl> 45.02993, 37.47248, 33.83535, 3...
<fctr> Second Year of Biennium, First...
<fctr> No Change, No Change, No Chang...
<dbl> 0.000000000, -0.014285716, 0.00...
<dbl> 0.00000000, -0.03361351, 0.0000...

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

change_in_citizen_ideology <dbl> 6.51300, -7.55745, -3.63713, 5....

Two variables stand out as especially important. The first is gov_request, which is the amount of new taxes
requested by the governor. The second is estimated_imbalance, which is the estimated budget imbalance
for that year. Let’s use each of these variables and fit two linear models.

fitl <- 1m(tax_change ~ gov_request, data = training_set)
fit2 <- 1m(tax_change ~ estimated_imbalance, data = training_set)

Now here is the important question: How do we know which of these models will best predict the years 2010
and 2011, which are not in this data set, but in the prediction set. Here is the answer: we don’t. We have
to rely on a good theory or model of the budget making process. However, we can try to guess how well
out model will predict out-of-sample cases (in this situation, 2010 and 2011) based on how well it predicts
in-sample cases (in this situation, 1988-2009).

R.M.S. Error

First, we can look at the r.m.s. error for each regression. Of course, a lower r.m.s. error is prefered. However,
a mdel that becomes too complex might fit the in-sample data extremely well, but out-of-sample data quite
poorly. So bias yourself toward simpler models and models that make theoretical sense.

sqrt (mean(residuals(£fit1)~2)) # r.m.s. error for fitl
[1] 383.471
sqrt(mean(residuals(£fit2)~2)) # r.m.s. error for fit2

[1] 508.0815

Prediction

Because the r.m.s. error suggests that fit1 is the better model, we might want to use that model to make
predictions for the prediction set. For this, we can use the predict () function.

The predict function takes two arguments:

1. The first argument is the output of 1m() for the model you want to use to make predictions. This
argument is usually unnamed.

2. The second argument newdata, which is the data frame for which you’d like to make predictions. This
data frame should include the predictors used the the model (the variable(s) on the right-hand side of
the ~), but it does not need to include the outcome variable. If this argument is not included, then
predict () makes predictions for the data set used to fit the model.

By default, we store the predictions a new variable in the prediction data set.

prediction_set$prediction <- predict(fitl, newdata = prediction_set)

Are these predictions any good? We don’t know. In order to find out, we’d have to compare the predictions
to the actual values, which I have safely hidden away on my computer.

Review Exercises

1. Explain what the 1m() function does and how it works. In particular, what is the first argument to
1m()? The second? What does 1m() output (or return)?

2. What does the function coef () do? In particular, what is the first (and only) argument to coef ()?
What does it output?

3. What does the function residuals() do? In particular, what is the first (and only) argument to
residuals()? What does it output? How can you use the output to calculate the r.m.s. error of the
regression?

4. What function do you use to add a linear regression line to a scatterplot? What arguments do we
typically supply and why?

5. Explain how to adjust the alpha transparency of the points in a scatterplot. Explain how to jitter the
points.

6. What model summary can we use to guess the predictive ability of the model? How do we calculate it
in R?

7. What does the function predict () do? In particular, what is the first argument to predict()? The
second? What does it output? How do you store the output of predict () as a variable in the prediction
set?

10

	Regression in R
	Fitting a Linear Regression Model
	Model Coefficients
	R.M.S. Error

	Fitting a Line in ggplot
	Alpha Transparency
	Jittering

	Prediction
	R.M.S. Error
	Prediction

